
Chapter 3

Triple Integrals

Triple integrals are the natural extensions of double integrals to three di-
mensions. The basic physical motivation of such integrals is the same as for
double integrals: determining the amount of a quantity, typically expressed as
a density, within a three-dimensional region necessitates performing a triple
integral of the quantity over that region. Just as for double integrals, there
are coordinate systems other than Cartesian that are convenient for integrat-
ing over certain types of regions. We will discuss the two most common of
such coordinate systems, circular cylindrical coordinates and spherical polar
coordinates, and show how integrals are transformed into these coordinate
systems.

3.1 Integrals in Cartesian Coordinates

Suppose there is a quantity f that represents the density of a physical quan-
tity, such as the mass or charge density at every point (x, y, z) in a region of
three-dimensional space. The amount of this quantity within a region V is
obtained by integrating over the ranges of x, y, and z that span the interior
of V . Since this calculation involves three separate integrations, it is called
a triple integral, and is written as

∫∫∫
V

f(x, y, z) dx dy dz . (3.1)
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34 Triple Integrals

Following our discussion of double integrals, there are several points to note
about triple integrals:

1. Once the volume V has been specified, the integral has a unique value.

2. The integrals over x, y, and z can be carried out in any order.

3. If f = 1, the integral yields the volume of the integration region:∫∫∫
V

dx dy dz = V . (3.2)

The evaluation of triple integrals proceeds in direct analogy to the cases
described in Chapter 3 for double integrals. The following examples illustrate
the different situations that can arise.

Example. Suppose f = xyz, and
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Figure 3.1: The cubic region for the
triple integral in Eq. (3.4).

that V is the volume shown in Fig. 3.1.
We must first determine the ranges of
the integration variables. The volume
V is a cube in the positive octant of
space with one corner at the origin.
The points (x, y, z) within the cube
have coordinates within the ranges

0 ≤ x ≤ 1 ,

0 ≤ y ≤ 1 , (3.3)

0 ≤ z ≤ 1 .

The triple integral of f = xyz within
the cube in Fig. 3.1 is therefore calcu-
lated as ∫∫∫

V
f(x, y, z)dx dy dz =

∫ 1

0
x dx︸ ︷︷ ︸
1
2

∫ 1

0
y dy︸ ︷︷ ︸
1
2

∫ 1

0
z dz︸ ︷︷ ︸
1
2

=
1

8
. (3.4)
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This type of region, where the ranges of x, y, and z are specified inde-
pendently, is the simplest for triple integrals. The most general volume of
this type is a rectangular prism aligned with the coordinate axes, where each
side is a rectangle parallel to one of the coordinate planes. The next two
examples have a volumes which do not satisfy these criteria, with the result
that the triple integrals become iterated integrals.

Example. Suppose that f = xyz,
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Figure 3.2: The volume for the triple
integral in Eq. (3.9).

as in the preceding example, and V
is the “wedge” shown in Fig. 3.2. We
first determine the ranges of the inte-
gration variables. The wedge is boun-
ded from above by the plane y−z = 0,
with all other bounding planes lying
parallel to coordinate planes. Thus,
the range of x is

0 ≤ x ≤ 1 . (3.5)

The triangular sides of the wedge are
parallel to the plane x = 0, so the
ranges of the y and z coordinates cannot be specified independently. Re-
ferring to Fig. 2.4, the ranges of these variables are

0 ≤ y ≤ 1 , 0 ≤ z ≤ y . (3.6)

An alternative choice is (cf. Fig. 2.4)

z ≤ y ≤ 1 , 0 ≤ z ≤ 1 . (3.7)

Using the ranges in Eq. (3.6), the triple integral is∫∫∫
V

f(x, y, z)dx dy dz =
∫ 1

0
x dx

∫ 1

0
y dy

∫ y

0
z dz . (3.8)

As was the case for double integrals, this is called an iterated integral because
the upper limit of the z-integral is y, which necessitates evaluating this in-
tegral before the y-integral. The x-integral can be carried out independently
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of the other two. Thus, carrying out the required integrations,∫ 1

0
x dx︸ ︷︷ ︸
1
2

∫ 1

0
y dy

∫ y

0
z dz =

1

2

∫ 1

0
y dy

∫ y

0
z dz

=
1

2

∫ 1

0
y dy

(
1

2
z2

∣∣∣∣y
0

)
︸ ︷︷ ︸

1
2
y2

=
1

4

∫ 1

0
y3 dy︸ ︷︷ ︸
1
4

=
1

16
. (3.9)

The evaluation of this integral with the ranges in Eq. (3.7) is left as an
exercise.

Example. Consider now the in-
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Figure 3.3: The for the triple integral
in Eq. (3.4).

tegration of f = xyz over the vol-
ume in Fig. 3.3. This region is con-
tained in the positive octant, bounded
from below by the x-y plane and from
above by the plane x + y + z = 1.
The ranges of the integration variables
are obtained by first observing that, in
the x-y plane, where z = 0, the (x, y)
coordinates within V are bounded by
the line x + y = 1. Hence, the ranges
of x and y may be chosen as

0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 − x . (3.10)

The lower bound for the range of z for all values of x and y is z = 0. The upper
bound is obtained from the equation of the plane, solved for z: z = 1−x−y.
Hence,

0 ≤ z ≤ 1 − x − y , (3.11)

so the integral to be evaluated is∫∫∫
V

f(x, y, z)dx dy dz =
∫ 1

0
x dx

∫ 1−x

0
y dy

∫ 1−x−y

0
z dz . (3.12)

This is again an iterated integral in which the z-integration must be evaluated
first, then the y-integration, and finally the x-integration. The integral over
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z is evaluated as

∫ 1−x−y

0
z dz =

(
1

2
z2

∣∣∣∣1−x−y

0

)
=

1

2
(1 − x − y)2 (3.13)

By substituting this result into the y-integral and carrying out an integration
by parts, we obtain

1

2

∫ 1−x

0
y(1 − x − y)2 dy

= −1

6
y(1 − x − y)3

∣∣∣∣1−x

0︸ ︷︷ ︸
0

+
1

6

∫ 1−x

0
(1 − x − y)3 dy

= − 1

24
(1 − x − y)4

∣∣∣∣1−x

0

=
1

24
(1 − x)4 . (3.14)

Finally, substitution of this expression into the x-integral and again integrat-
ing by parts yields

1

24

∫ 1

0
x(1 − x)4 dx = − 1

120
x(1 − x)5

∣∣∣∣1
0︸ ︷︷ ︸

0

+
1

120

∫ 1

0
(1 − x)5 dx

= − 1

720
(1 − x)5

∣∣∣∣1
0

=
1

720
(3.15)

as the value of the integral in Eq. (3.12).

Cartesian coordinates are convenient for evaluating triple integrals within
volumes bounded by planes. But there are many situations where other
geometries are used, the most common of which are spheres and volumes
contained within surfaces of revolution. In the next two sections, we will
discuss two coordinate systems that considerably extend the capabilities of
triple integrals.
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3.2 Cylindrical Polar Coordinates

3.2.1 Definition of the Coordinate System

Cylindrical polar coordinates generalize circular polar coordinates (Sec. 2.2)
to three dimensions by adding the “height” z to indicate the position of a
point relative to the x-y plane [Fig. 3.4(a)]. The complete transformation
from (x, y, z) to (r, φ, z) is

x = r cos φ, y = r sin φ, z = z , (3.16)

where
0 ≤ r < ∞, 0 ≤ φ < 2π, −∞ < z < ∞ . (3.17)

This transformation is depicted in Fig. 3.4. The expressions for r and φ in
terms of x and y are the same as those in Eq. (2.28).

3.2.2 The Integration Element

The integration element of this coordinate system can be obtained in two
ways. The simplest way is to observe that the z-coordinate simply adds a

x

y

z

r

(a) (b)

Figure 3.4: Two illustrations of circular polar coordinates. (a) The definitions of
r, φ, and z. (b) The representation of any point as the intersection of the surface
of constant r (the cylinder), constant φ (the vertical plane), and constant z (the
horizontal plane).
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“thickness” dz to the integration element in circular polar coordinates:

dV = r dr dφ dz . (3.18)

The other method, described in Problem Set 4, is based on writing any point
(x, y, z) as a radius vector r

r = r cos φ i + r sin φ j + z k , (3.19)

and calculating the integration element from the vector product

dV = |drr ·drφ × drz| , (3.20)

where drr, drφ, and drz are the differential changes of r with respect to r,
φ, and z, respectively:

drr = dr cos φ i + dr sin φ j , (3.21)

drφ = −r sin φ dφ i + r cos φ dφ j , (3.22)

drz = dz k . (3.23)

3.2.3 Triple Integrals in Cylindrical Polar Coordinates

Example. Consider the sphere
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Figure 3.5: The unit upper half-
sphere, x2 + y2 + z2 + 1, for z ≥ 0.

with unit radius in the upper half
-space, as shown in Fig. 3.5. The equa-
tion of the surface is

x2 + y2 + z2 = 1 , (3.24)

where z ≥ 0. To calculate this vol-
ume as an integral in circular polar
coordinates, we must first determine
the ranges of the integration variables.
The ranges of r and φ span the interior of the half-sphere:

0 ≤ r ≤ 1 , 0 ≤ φ < 2π (3.25)
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The upper bound for the range of z is obtained from the equation of the
sphere, solved for z:

z2 = 1 − x2 − y2 = 1 − r2 . (3.26)

The half-sphere is bounded from below by the x-y plane, where z = 0. Hence,
the range of z is

0 ≤ z ≤
√

1 − r2 . (3.27)

Thus, the volume integral of the half-sphere is given by

V =
∫ 1

0
r dr

∫ 2π

0
dφ︸ ︷︷ ︸

2π

∫ √
1−r2

0
dz︸ ︷︷ ︸√

1 − r2

= 2π
∫ 1

0
r
√

1 − r2 dr

= 2π

[
−1

3
(1 − r2)3/2

∣∣∣∣1
0

]
= 2π × 1

3
=

2π

3
, (3.28)

which is one-half the volume of the unit sphere.

Example. Consider the cone in
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Figure 3.6: The surface determined by
x2 + y2 = (1 − z)2, for 0 ≤ z ≤ 1.

Fig. 3.6. The surface is given by

x2 + y2 = (1 − z)2 , (3.29)

for 0 ≤ z ≤ 1. The ranges of r and φ
are

0 ≤ r ≤ 1 , 0 ≤ φ < 2π . (3.30)

The range of z is calculated by follow-
ing the steps in the preceding exam-
ple. The cone is bounded from below
by the x-y plane, where z = 0. The upper bound of x is determined by the
surface of the cone which, in cylindrical coordinates, is r2 = (1 − z)2. Thus,
the range of z is

0 ≤ z ≤ 1 − r . (3.31)
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The volume integral of the cone is

V =
∫ 1

0
r dr

∫ 2π

0
dφ︸ ︷︷ ︸

2π

∫ 1−r

0︸ ︷︷ ︸
1 − r

= 2π
∫ 1

0
(r − r2) dr

= 2π

(
r2

2

∣∣∣∣1
0
− r3

3

∣∣∣∣1
0

)
= 2π × 1

6
=

π

3
. (3.32)

The preceding two examples showed how cylindrical polar coordinates
are used to calculate the volumes of surfaces of revolution, i.e. surfaces that
were obtained by rotating a curve about an axes, in those cases, the z-axis.
We now consider a more substantial example by calculating the volume of
another surface of revolution, the torus.

Example.∗ A torus, shown in

Figure 3.7: The surface of a torus.

Fig. 3.7, is a surface of revolution gen-
erated by rotating a circle of radius ρ
whose center is a distance R > ρ from
the origin about an axis, usually taken
as the z-axis. The calculation of the
volume of a torus does not actually
require an expression for the surface.
The ranges of r, φ, and z can be deter-
mined by referring to Fig. 3.8. Con-
sider first the left panel. Suppose we take the range of z as

−ρ ≤ z ≤ ρ . (3.33)

The equation of the circle in the x-z plane is

(x − R)2 + z2 = ρ2 , (3.34)

so the range of r is obtained by solving this equation for x and referring to
Fig. 3.8(b):

R −
√

ρ2 − z2 ≤ r ≤ R +
√

ρ2 − z2 . (3.35)
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Figure 3.8: (a) The circle in the x-z plane that is rotated about the z-axis. (b)
The section of the torus in the x-y plane. The emboldened line is the path traced
out by the center of the circle.

Figure 3.8(b) indicates that the range of φ is

0 ≤ φ ≤ 2π . (3.36)

The volume integral of the torus is thus given by

V =
∫ 2π

0
dφ

∫ ρ

−ρ
dz

∫ R+
√

ρ2−z2

R−
√

ρ2−z2
r dr . (3.37)

The radial integral is evaluated as

∫ R+
√

ρ2−z2

R−
√

ρ2−z2
r dr =

r2

2

∣∣∣∣R+
√

ρ2−z2

R−
√

ρ2−z2

=
1

2

[(
R +

√
ρ2 − z2

)2

−
(
R −

√
ρ2 − z2

)2
]

= 2R
√

ρ2 − z2 . (3.38)

The integral over the azimuthal angle in Eq. (3.37) is 2π, so the volume
integral reduces to

V = 4πR
∫ ρ

−ρ

√
ρ2 − z2 dz . (3.39)
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This integral can be evaluated by the trigonometric substitution z = ρ sin θ,
where −1

2
π ≤ θ ≤ 1

2
π. Carrying out the required changes to the integrand,

the integration element, and the limits of integration yields

V = 4πR
∫ ρ

−ρ

√
ρ2 − z2 dz = 4πRρ2

∫ 1
2
π

− 1
2
π
cos2 θ dθ︸ ︷︷ ︸
1
2
π

= 2π2Rρ2 . (3.40)

By writing this result as

V = (2πR) × (πρ2) , (3.41)

the volume of a torus can be interpreted as the product of the area of the
circle that is rotated about the z-axis to form the torus (πρ2) and the length
of the path taken by the center of the circle (2πR). This is a special case
of Pappus’ Theorem1: let R be a planar region that lies entirely on one side
of an axis (usually the z-axis) in the plane. If R is rotated about this axis,
the volume of the resulting solid is the product of the area A of R and the
distance travelled by its centroid.

3.3 Spherical Polar Coordinates

One of the most important coordinate systems in physics is spherical polar
coordinates. These are appropriate whenever there is a spherical boundary
or a section of such a boundary. Spherical polar coordinates are especially
important for the quantum mechanical theory of atoms, which is based on
spherical symmetry.

3.3.1 Definition of the Coordinate System

In spherical polar coordinates, a point (x, y, z) is expressed in terms of the ra-
dius r, which measures the distance of the point from the origin, the azimuthal
angle φ, which measures the orientation of the radius vector with respect to

1Pappus of Alexandria, who lived in the 4th century, is considered to be the last of the
great Greek geometers.
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Figure 3.9: Two depictions of spherical polar coordinates. (a) The definitions and
ranges of r, φ, and θ. (b) The representation of any point as the intersection of
the surface of constant r (the sphere), constant φ (the plane), and constant θ (the
cone).

the positive x-axis, with positive φ taken in the counterclockwise direction,
and the polar angle θ, which measures the orientation of the radius vector
with respect to the z-axis. These definitions and conventions are depicted in
Fig. 3.9.

The transformations between the z

r

r sin

r cos

Figure 3.10: The orientation of a ra-
dial vector with respect to the z-axis.

coordinates (x, y, z) and (r, φ, θ) is de-
termined from the trigonometric con-
struction in Fig. 3.10. The projection
of the radial vector onto the x-y plane
has length r sin θ. The x and y coordi-
nates are obtained by projecting this
quantity onto the x and y axes:

x = r sin θ cos φ , (3.42)

y = r sin θ sin φ . (3.43)

The projection of the radius onto the
z-axis is

z = r cos θ . (3.44)

These are the transformations that relate Cartesian coordinates to spherical
polar coordinates.
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The ranges of the radial and azimuthal variables are determined by re-
ferring to Fig. 3.9(a). As in circular polar coordinates (Sec. 2.2)

0 ≤ r < ∞ , 0 ≤ φ ≤ 2π . (3.45)

The range of θ is determined by requiring that the transformation between
Cartesian and spherical polar coordinates is single-valued, i.e. that one and
only one set of spherical polar coordinates (r, φ, θ) corresponds to a particular
set of Cartesian coordinates (x, y, z). This necessitates restricting the range
of θ to

0 ≤ θ ≤ π . (3.46)

To understand this, consider a point r

r = r cos φ sin θ i + r sin φ sin θ j + r cos θ k . (3.47)

Suppose that we transform this point by rotating the azimuthal angle by
π: φ → φ+π. According to the Eq. (3.46), this is not an allowed rotation. The
coordinates of the transformed point r′ are obtained by applying standard
trigonometric identities:

r′ = −r cos φ sin θ i − r sin φ sin θ j + r cos θ k . (3.48)

Now suppose that we rotate the polar angle by π: θ → θ + π. The coordi-
nates of the transformed point r′′ are again determined by applying standard
trigonometric identities:

r′′ = −r cos φ sin θ i − r sin φ sin θ j + r cos θ k . (3.49)

By comparing these coordinates with those in Eq. (3.48), we conclude that
r′′ = r′, i.e. that there are two ways of labelling the same point. To avoid this
unacceptable result, the range of θ is restricted to the range in Eq. (3.46).

3.3.2 The Integration Element

The integration element in spherical polar coordinates is most easily obtained
with the procedure in Problem Set 4. The radius vector associated with a
point (x, y, z) is written as

r = r cos φ sin θ i + r sin φ sin θ j + r cos θ k , (3.50)
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and calculating the integration element from the vector product

dV = |drr ·drφ × drθ| , (3.51)

where drr, drφ, and drθ are the differential changes of r with respect to r,
φ, and z, respectively:

drr = dr cos φ sin θ i + dr sin φ sin θ j + dr cos θ k , (3.52)

drφ = −r sin φ sin θ dφ i + r cos φ sin θ dφ j , (3.53)

drθ = r cos φ cos θ dθ i + r sin φ cos θ dθ j + −r sin θ dθ k . (3.54)

These vectors are mutually orthogonal so the integration element is obtained
from the product of their magnitudes:

dV = r2 sin θ dr dφ dθ . (3.55)

3.3.3 Triple Integrals in Spherical Polar Coordinates

Integrals of a function F (x, y, z) over a volume V are written in spherical
polar coordinates as∫∫∫

V
F (x, y, z) dx dy dz

=
∫∫∫

V ′
F [x(r, φ, θ), y(r, φ, θ), z(r, φ, θ)] r2 sin θ dr dφ dθ

≡
∫∫∫

V ′
f(r, φ, θ) r2 sin θ dr dφ dθ , (3.56)

where V ′ is the volume V expressed in spherical polar coordinates. There
are two important special cases of this integral. If f has no φ-dependence,
f = f(r, θ), then f is said to have azimuthal symmetry. According to the
transformations in Eqs. (3.43) and (3.44) and Fig. 3.8, this corresponds to
rotational symmetry about the z-axis. Surfaces of revolution have this type
of symmetry. A physical situation with this type of symmetry is discussed
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in Problem Set 4. The integral over φ can be evaluated immediately and the
general expression in Eq. (3.56) becomes

2π
∫∫

f(r, θ) r2sinθ dr dθ . (3.57)

In the second case, where f has neither φ- nor θ-dependence, f is said to
be isotropic. This corresponds to “spherical” symmetry in that f depends
only on the radius r and not on any angular orientation. The integrals over
φ and θ can be evaluated immediately and the general integral in Eq. (3.56)
reduces to

4π
∫

f(r)r2 dr . (3.58)

This integral is seen to correspond to the integration over radial shells.

Example. We consider first the calculation of the volume of a sphere of
radius R. Referring to Eq. (3.56), this corresponds to the case f = 1. The
ranges of the integration variables are obtained directly from Fig. 3.9(a):

0 ≤ r ≤ R , 0 ≤ φ < 2π , 0 ≤ θ ≤ π , (3.59)

so the volume integral is

V =
∫ R

0
r2 dr︸ ︷︷ ︸

1
3
R

∫ 2π

0
dφ︸ ︷︷ ︸

2π

∫ π

0
sin θ dθ︸ ︷︷ ︸
2

=
4

3
πR3 . (3.60)

The generalization of this procedure to sections of a sphere between given
azimuthal and polar angles and to spherical shells with given inner and out
radii is straightforward.

Example. Consider the integral of f = e−αr over all space. This is
an example of a function with spherical symmetry that occurs frequently in
quantum mechanics. The ranges of the integration variables are

0 ≤ r < ∞ , 0 ≤ φ < 2π , 0 ≤ θ ≤ π , (3.61)

so the integral of f becomes∫ ∞

0
r2e−αr dr

∫ 2π

0
dφ︸ ︷︷ ︸

2π

∫ π

0
sin θ dθ︸ ︷︷ ︸
2

= 4π
∫ ∞

0
r2e−αr dr . (3.62)
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The radial integral is evaluated by performing successive integrations by
parts: ∫ ∞

0
r2︸︷︷︸
u

e−αr dr︸ ︷︷ ︸
dv

= − 1

α
r2e−αr

∣∣∣∣∞
0︸ ︷︷ ︸

0

+
2

α
re−αr dr

=
2

α

(
− 1

α
re−αr

∣∣∣∣∞
0︸ ︷︷ ︸

0

+
1

α

∫ ∞

0
e−αr dr

)

=
2

α2

(
− 1

α
e−αr

∣∣∣∣∞
0

)

=
2

α3
. (3.63)

Notice that, in arriving at this result, we have twice used the fact that

lim
x→∞

xne−αx = 0 (3.64)

for any n.

3.4 Surface Integrals

A particular case of integrals in three dimensions involves integrals over sur-
faces. A common type of surface integral is where one of the three variables
is held constant. Consider the surface of a sphere of radius R. According to
Eq. (3.50) the radius r vector at any point on the sphere is

r = R cos φ sin θ i + R sin φ sin θ j + R cos θ k , (3.65)

The element of area integration is obtained by calculating the differential of
this vector for changes in turn of dφ and dθ:

drφ = −R sin φ sin θ dφ i + R cos φ sin θ dφ j , (3.66)

drθ = R cos φ cos θ dθ i + R sin φ cos θ dθ j + −R sin θ dθk . (3.67)
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These vectors are orthogonal,

drφ ·drθ = 0 , (3.68)

so the differential area dA corresponding to these differential changes is ob-
tained from the product of the magnitudes of drφ and drφ:

dA = |drφ||drθ| = R sin θ dφ × R dθ = R2 sin θ dφ dθ . (3.69)

Example. The surface area of a sphere of radius R is represented as

R2
∫ 2π

0
dφ

∫ π

0
sin θ dθ = R2 × 2π × 2 = 4πR2 . (3.70)

The corresponding expression of the surface area subtended by azimuthal
angles Φ1 and Φ2 and polar angles Θ1 and Θ2 is

R2
∫ Φ2

Φ1

dφ
∫ Θ2

Θ1

sin θ dθ = R2(Φ2 − Φ1)(cos Θ1 − cos Θ2) . (3.71)

The other type of surface integral we will encounter involve a cylinder of
radius R. The radius vector is, from Eq. (3.19), given by

r = R cos φ i + R sin φ j + z k , (3.72)

The differential dr corresponding to differential changes of dφ and dz are

drφ = −R sin φ dφ i + R cos φ dφj , (3.73)

drz = dz k . (3.74)

These vectors are manifestly orthogonal, drφ·drz = 0, so the differential area
dA corresponding to these differential changes is obtained from the product
of the magnitudes of drφ and drz:

dA = R dφ dz . (3.75)
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Example. The surface of a cylinder of radius R and height H is calcu-
lated as

R
∫ 2π

0
dφ

∫ H

0
dz = 2πRH . (3.76)

The surface area of cylinder between heights H1 and H2 and azimuthal angles
Φ1 and Φ2 is similarly calculated as

R
∫ Φ2

Φ1

dφ
∫ H2

H1

dz = R(Φ2 − Φ1)(H2 − H1) . (3.77)

3.5 Summary

The triple integral of a function f(x, y, z), viewed as a density of some
physical quantity, is the amount of that quantity within a volume in three-
dimensional space. There is considerably more freedom to specify other coo-
ordinate systems than in two dimensions and many applications in physics
rely on such transformations to enable calculations to be carried out. From
Cartesian coordinates, we transformed triple integrals into cylindrical polar
coordinates, which are the natural generalizations of circular polar coordi-
nates to three dimensions, and are appropriate to situations where there is
azimuthal symmetry, and spherical polar coordinates, for situations that in-
volve spherical symmetry. The Jacobians obtained in each case reflect the
position dependence of the magnitude of the differential volume elements.


