
Chapter 1

Differential and Integral
Calculus

There are two basic operations in calculus: differentiation and integration.
These are used throughout physics, both as direct operations on physical
quantities and for expressing equations that govern the behavior of physical
systems. In this section, we review the basic tenets of calculus; the same
procedures will be applied throughout this course to vectors in two and three
spatial dimensions, so this chapter serves as a template for all of our further
discussions.

1.1 Ordinary and Partial Derivatives

The derivative of a function f of a single independent variable x is defined by
the following limit:

df

dx
≡ lim

∆x→0

[
f(x + ∆x) − f(x)

∆x

]
. (1.1)

As the construction in Fig. 1.1 demonstrates, the derivative is the slope of
the tangent to f at the point x. The derivative of f is often written as f ′(x).
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Figure 1.1: The construction of the derivative in Eq. (1.1). The left panel shows a
line through the point (x, f) with slope ∆f/∆x. The right panel shows the effect
of taking the limit ∆x → 0, which results in a line through (x, f) that is tangent
to f at x.

Example. Consider the function f(x) = x2. The derivative of this function
with respect to x can be calculated from first principles by using the definition
in Eq. (1.1) as follows:

d x2

dx
= lim

∆x→0

[
(x + ∆x)2 − x2

∆x

]

= lim
∆x→0

[
2x∆x + (∆x)2

∆x

]

= lim
∆x→0

(2x + ∆x)

= 2x . (1.2)

The basic definition in Eq. (1.1) can be used to show the following well-
known formulae of sums, products, and quotients of functions, and the “chain
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rule” for composite functions (i.e. functions of functions):

d

dx
(af + bg) = a

df

dx
+ b

dg

dx
, (1.3)

d(fg)

dx
=

df

dx
g + f

dg

dx
, (1.4)

d

dx

(
f

g

)
=

1

g2

(
df

dx
g − f

dg

dx

)
, (1.5)

d f(g(x))

dx
=

df

dg

dg

dx
, (1.6)

in which a and b are any constants and f and g are any differentiable con-
stants. Specific derivatives that will be used throughout this course are

d xn

dx
= nxn−1 , (1.7)

d sin x

dx
= cos x , (1.8)

d cos x

dx
= − sin x , (1.9)

d ef(x)

dx
=

df

dx
ef(x) , (1.10)

d ln x

dx
=

1

x
, (1.11)

where n is an integer. All of these results will be derived from the definition
in Eq. (1.1) in Classwork 1 and Problem Set 1.

The derivative can be extended to functions of more than one variable.
For a function f of two independent variables x and y, the partial derivative
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Figure 1.2: (a) A section of a surface f(x, y). (b) The partial derivative of f with
respect to x, and (c) the partial derivative of f with respect to y at the same point.
The constructions in (b) and (c) show that the two partial derivatives of f can be
obtained by slicing the surface parallel to the appropriate axis.

of f with respect to x is defined as (Fig. 1.2)

∂f

∂x
≡ lim

∆x→0

[
f(x + ∆x, y) − f(x, y)

∆x

]
, (1.12)

with an analogous expression for the partial derivative ∂f/∂y:

∂f

∂y
≡ lim

∆y→0

[
f(x, y + ∆y) − f(x, y)

∆y

]
. (1.13)

As these definitions indicate, when taking the partial derivative with respect
to a particular independent variable, the other independent variables are held
fixed. Thus, the usual rules of differentiation apply, with these other variables
treated effectively as constants. Partial derivatives are often abbreviated with
a subscript to indicate the independent variable used for the derivative. In
this notation, the two derivatives in Eqs. (1.12) and (1.13) are written as fx

and fy, respectively. Similarly, the three second-order derivatives are written
as fxx, fxy, and fyy. The generalization of partial derivatives to any number
of independent variables is straightforward.

The derivative can also be applied to vectors. Consider the quantity

r(t) = x(t) i + y(t) j + z(t) k , (1.14)
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where i, j, and k are the usual unit vectors along the x, y, and z directions,
respectively. This may be imagined as the position of a particle in space
at time t. The derivative of r with respect to t, which is the instantaneous
velocity of the particle, is given by

v(t) =
dr

dt
=

dx

dt
i +

dy

dt
j +

dz

dt
k . (1.15)

This vector is tangent to r, with a magnitude that is equal to the speed of
the particle.

1.2 Integration

The integral of a function f(x) over an interval a ≤ x ≤ b is defined as the
limit of “Riemann sums”, which are an approximation to the area bounded
by f , the x-axis, and the lines x = a and x = b, as indicated in Fig. 1.3. A
Riemann sum is constructed by first dividing the interval into N subintervals
of length ∆xN ≡ (b − a)/N . Associated with each subinterval is a strip of
area f(a+n∆xN)∆xN . The Riemann sum is obtained by adding all of these
areas together. The integral of f over this interval is obtained as the limiting
value of this sum as the length of the subintervals vanishes (N → ∞):

∫ b

a
f(x) dx ≡ lim

N→∞

[
N∑

n=1

f(a + n∆xN)∆xN

]
, (1.16)

Example. The integral of f(x) = x between x = a and x = b is calculated
by first constructing the Riemann sum. For this function, we have that

f(a + n∆xN) = a + n∆xN , (1.17)

so the area corresponding to each strip is (a + n∆xN)∆xn. Hence, definition
in Eq. (1.16) reduces to

∫ b

a
x dx = lim

N→∞

[
N∑

n=1

(a + n∆xN)∆xN

]
. (1.18)
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Figure 1.3: The approximation by Riemann sums (left panel) of the area between
a curve and the x-axis (right panel).

With ∆xN = (b − a)/N , we have

∫ b

a
x dx = lim

N→∞

[
N∑

n=1

(
a + n

b − a

N

) (
b − a

N

)]

= lim
N→∞

⎧⎨
⎩

N∑
n=1

⎡
⎣a

(
b − a

N

)
+ n

(
b − a

N

)2
⎤
⎦

⎫⎬
⎭ . (1.19)

We can break up the right-hand side of this equation into two separate sums.
The first of these can be easily evaluated because there is no explicit n-
dependence:

N∑
n=1

a

(
b − a

N

)
= Na

(
b − a

N

)
= a(b − a) . (1.20)

The second sum,

N∑
n=1

n

(
b − a

N

)2

=

(
b − a

N

)2 N∑
n=1

n , (1.21)

requires the following result:

N∑
n=1

n = 1
2
N(N + 1) . (1.22)
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Thus,

(
b − a

N

)2 N∑
n=1

n = 1
2
(b − a)2N + 1

N
. (1.23)

Combining these summations and taking the limit N → ∞ allows us to
evaluate the integral:

∫ b

a
x dx = a(b − a) + 1

2
(b − a)2 lim

N→∞

(
N + 1

N

)
︸ ︷︷ ︸

= 1

= 1
2
(b2 − a2) . (1.24)

1.3 Fundamental Theorem of Calculus

The calculation of an integral as the limit of Riemann sums is much more
cumbersome than determining the derivative of a function from Eq. (1.1).
Fortunately, the Fundamental Theorem of Calculus alleviates the need such
calculations for a large class of integrals. This theorem states that

∫ b

a
f(x) dx = F (b) − F (a) , (1.25)

where

dF

dx
= f . (1.26)

The function F , whose derivative is equal to f is called the anti-derivative or
the primitive function of f . Note the structure of the Fundamental Theorem.
The integral of f is an expression that involves the values of f at every
point within the interval (a, b). But the evaluation of this integral with the
primitive function F of f requires the values of F only at the endpoints a and
b of this interval. The basic theorems of vector calculus will be seen to have
an analogous structure. A proof of the Fundamental Theorem of Calculus is
given in the last section of this chapter.
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Example. Consider the integral

∫ b

a
x dx , (1.27)

which was evaluated in the preceding section using Riemann sums. To use the
Fundamental Theorem of Calculus, we first identify the primitive function F
of x as

F (x) = 1
2
x2 + A , (1.28)

where A is a constant (called a “constant of integration”). Then, the value
of this integral is

∫ b

a
x dx =

(
1
2
x2 + A

) ∣∣∣∣b
a

= 1
2
(b2 − a2) . (1.29)

Note that the constant A makes no contribution to the value of the inte-
gral. Thus, for the purposes of evaluating definite integrals, constants of
integration can be omitted from the primitive function F .

The Fundamental Theorem of Calculus enables a number of important
properties of integrals to be obtained. Higher-dimensional versions of this
theorem form one of the major themes of this course. The following properties
of definite integrals are implied by the Fundamental Theorem:

∫ b

a
f(x) dx = −

∫ a

b
f(x) dx , (1.30)

d

dx

[∫ x

a
f(s) ds

]
= f(x) , (1.31)

d

dx

[∫ b

x
f(s) ds

]
= −f(x) , (1.32)

d

dx

[∫ v(x)

u(x)
f(s) ds

]
=

dv

dx
f(v(x)) − du

dx
f(u(x)) . (1.33)
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1.4 Variable Transformations in Integrals

The fundamental theorem of calculus establishes a connection between deriva-
tives and integrals and provides a way of evaluating integrals in principle.
But evaluating the anti-derivative of particular functions (i.e. finding F such
that dF/dx = f) may still prove a challenging proposition and in some cases
may require numerical evaluation (e.g. the trapezoidal method). Several
methods have been developed for finding anti-derivatives in particular cases,
including integration by parts, trigonometric substitution and other variable
transformations, and partial fractions. Variable transformations in particular
provide a versatile way of changing difficult integrals into expressions that
are more manageable. We first work through an example.

Example. Consider the integral∫ 1

0

dx√
1 − x2

. (1.34)

This a standard example of an integral whose evaluation benefits from a
change of variables, in this case based on trigonometric functions. We define
a new variable of integration through

x = sin θ . (1.35)

To transform the integral, we must consider the effect of this transformation
on the integrand, the integration element, and the limits of integration. By
using the trigonometric identity cos2 θ + sin2θ = 1, the integrand is trans-
formed to

1√
1 − x2

=
1√

1 − sin2 θ
=

1

cos θ
. (1.36)

The integration element is calculated by applying the chain rule to Eq. (1.35):

dx = cos θ dθ . (1.37)

Lastly, the new limits of integration are determined by identifying the values
of θ whose values are 0 for the lower limit, and 1 for the upper limit. These
are identified as

sin(0) = 0 , sin(1
2
π) = 1 . (1.38)
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Thus, the original integral is transformed to∫ 1

0

dx√
1 − x2

=
∫ π/2

0
dθ , (1.39)

the right-hand side of which is easily evaluated, and we obtain∫ 1

0

dx√
1 − x2

= 1
2
π . (1.40)

This example illustrates the power of variable transformations: what seemed
as difficult evaluation has been transformed, through a judicious choice of
a new integration variable, to a much simpler expression. An appropriate
transformation is sometimes apparent from the integral itself, as in this ex-
ample, but may involve an element of trial and error. Most modern compu-
tational mathematics software, e.g Maple and Mathematica, perform a series
of transformations to determine the simplest form of an integral.

We can now formulate in general terms the transformation of an integral∫ b

a
f(x) dx (1.41)

under the change of variables x → t(x). The integrand becomes

f(x) = f(x(t)) , (1.42)

where x(t) is obtained from the inverse of t(x). Note that in the example
above,, the change of variables was defined in this form. The integration
element is transformed to

dx =
dx

dt
dt (1.43)

and the limits of integration are now

t(a) and t(b) . (1.44)

Hence, the general form of a change of variables in an integral is

∫ b

a
f(x) dx =

∫ t(b)

t(a)
f(x(t))

dx

dt
dt . (1.45)
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The choice of transformation is usually dictated by the requirement that
the primitive function of the transformed integrand, f(x(t))(dx/dt), is easier
to determine than the original function. The quantity dx/dt represents the
change in the density of integration points induced by the change of variables.
This is a key quantity that arises whenever integration variables are changed
and will be encountered again when we discuss coordinate transformations
in two and three dimensions.

The following indefinite integrals, which can be derived from the basic
formulae in Eqs. (1.7)–(1.11), will be used throughout this course:

∫
xn dx =

1

n + 1
xn+1 + C , (1.46)

∫
sin x dx = − cos x + C , (1.47)

∫
cos x dx = sin x + C , (1.48)

∫
e±x dx = ±e±x + C , (1.49)

∫
ln x dx =

1

x
+ C , (1.50)

∫
cos2 x dx = 1

2
x + 1

2
sin x cos x + C , (1.51)

∫
sin x cosn x dx = − 1

n + 1
cosn+1 x + C , (1.52)

∫
x2 e−x dx = −(x2 + 2x + 2) e−x + C . (1.53)

where n is a positive integer and C is a constant that is eliminated once the
integrals are evaluated between specific upper and lower limits. As guaran-
teed by the Fundamental Theorem, the derivative of the right-hand side of
each of these expressions yields the integrand on the corresponding left-hand
side.
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1.5 Proof of the Fundamental Theorem∗

Proving the Fundamental Theorem of Calculus requires that we first prove
the Mean Value Theorem:

If f is a real continuous function on an interval [a, b] and differentiable on
the open interval (a, b), then there is a point x within (a, b) at which

f(b) − f(a) = (b − a)f ′(x) .

This theorem is straightforward to understand in terms of the diagram shown
below.

a b

f(a)

f(b)

x

Slope = f (b) f (a)
b a

The quantity

f(b) − f(a)

b − a

represents the slope of the straight line passing through the end-points (a, f(a))
and (b, f(b)). The Mean Value Theorem states that, if f is differentiable ev-
erywhere within (a, b), there is a point x within this interval where the slope
f ′(x) of f is given by

f ′(x) =
f(b) − f(a)

b − a
.
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This is shown by the emboldened line in the figure above.
To use the Mean Value Theorem to prove the Fundamental Theorem of

Calculus, we define the function F by

F (x) =
∫ x

a
f(t) dt

for some function f and a ≤ x ≤ b. We will first show that F is a differen-
tiable function where f is continuous. Using the definition in Eq. (1.1), we
write the derivative of F as

dF

dx
= lim

∆x→0

[
F (x + ∆x) − F (x)

∆x

]

= lim
∆x→0

{
1

∆x

[∫ x+∆x

a
f(t) dt −

∫ x

a
f(t) dt

]}

= lim
∆x→0

{
1

∆x

[∫ x

a
f(t) dt +

∫ x+∆x

x
f(t) dt −

∫ x

a
f(t) dt

]}

= lim
∆x→0

[
1

∆x

∫ x+∆x

x
f(t) dt

]
.

The integral in the last line of this equation can be approximated by the area
of a strip of height f(x) and width ∆x, with a correction of order (∆x)2:∫ x+∆x

x
f(t) dt = f(x)∆x + O(∆x)2 .

Hence, upon substitution of this expression into the definition of the deriva-
tive of F , we obtain

dF

dx
= lim

∆x→0

{
1

∆x

[
f(x)∆x + O(∆x2)

]}

= lim
∆x→0

[f(x) + O(∆x)]

= f(x) ,

which demonstrates that the derivative of F exists for every point x where
f is continuous. In particular, if f is a continuous function on [a, b], then F
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is differentiable at every point in that interval. Thus, consider the partition
of [a, b] into N intervals such that xn−1 ≤ x ≤ xn, where x0 = a and xN = b,
as shown below:

x

f

x

f

We now use the Mean Value Theorem to choose a point tn within the nth
interval that satisfies

F (xn) − F (xn−1) = (xn − xn−1)F
′(tn) = (xn − xn−1)f(ni) .

Then

F (b) − F (a) =
N∑

n=1

[F (xn) − F (xn−1)] =
N∑

n=1

f(tn)∆xn ,

where ∆xn = xn − xn−1. The right-hand-side of this equation is represented
by the shaded area in the right panel in the figure above and is seen to be the
same basic construction as that used for Riemann sums shown in the figure
above. Accordingly, if we now take the limit N → ∞ this approaches the
area under the curve, and we have

F (b) − F (a) =
∫ b

a
f(t) dt ,

which is the Fundamental Theorem of Calculus.


