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1. (i) Write down the general expression for the Fourier series of a function f (x) of pe-
riod 2L , and the Euler-Fourier formulae for the coefficients a0, an, bn. Determine
the Fourier series for the periodic function f1(x), period 2L , defined by:

f1(x) =
�

A − x, −L < x < 0
A + x, 0 < x < L

where A is a constant. [9 marks]

(ii) Using the notation that the Fourier Transform of f (x) is defined by:

F [f (x)] = g(ω) =
1
2π

� ∞

−∞
f (x)e−iωxdx ,

compute the Fourier transform of the function f2(x) defined by:

f2(x) =




0, −∞ < x < 0
x, 0 < x < L
0, L < x < ∞

[5 marks]

(iii) Defining h(x) as the convolution of f2(x) with itself, i.e. h(x) = f2(x) ∗ f2(x), show
that h(x) is given by:

h(x) =




0, −∞ < x < 0
x3

6 , 0 < x < L
−2L3

3 + L2x − x3

6 , L < x < 2L
0, 2L < x < ∞

State the convolution theorem, and explain its advantage in the case that it were
necessary to compute the Fourier transform of h(x). [11 marks]

[Total 25 marks]
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2. (i) Solve the following initial value problems

dy
dx

=
3x2 + 4x + 2

2(y − 1)
y(0) = −1

dy
dt

+
2
t

y =
cos t

t2 y(π) = 0 .

[5 marks]

(ii) Laguerre’s differential equation is:

x
d2y
dx2 + (1 − x)

dy
dx

+ my = 0 ,

where m is a constant, not necessarily an integer. Using the Frobenius method,
show that the equation has one series solution of the form:

y(x) = C0

∞�

n=0

(−1)nm(m − 1)(m − 2)...(m − n + 1)
(n!)2 xn,

where C0 is an arbitrary constant. [10 marks]

(iii) What is the radius of convergence of the series? [5 marks]

(iv) Show that the series terminates when m is an integer. In such a case the
solution may be written as:

y(x) = C0Lm(x)

where Lm(x) are Laguerre’s polynomials. The first two Laguerre polynomials are
given by:

L0(x) = 1, L1(x) = 1 − x .

Verify that L0 and L1 are orthogonal on the interval [0,∞] with respect to the
weight function e−x , by evaluating the integral

� ∞

0
e−xL0L1dx .

[5 marks]

[Total 25 marks]
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3. (i) Determine the general solution of the following differential equation:

d2y
dx2 + 3

dy
dx

+ 2y = 10 .

Also confirm that the solutions you find for the homogeneous equation are inde-
pendent. [5 marks]

(ii) The temperature in a two-dimensional slab is determined by the solution of
Laplace’s equation in two dimensions:

∂2T
∂x2 +

∂2T
∂y2 = 0 .

By seeking solutions of the form T = X (x)Y (y), show that Laplace’s equation is
separable and takes the form:

1
X (x)

d2X (x)
dx2 = − 1

Y (y)
d2Y (y)

dy2 .

If the separation constant is −k 2, derive the general solutions for X and Y .
[6 marks]

(iii) Consider the steady-state temperature in a two-dimensional slab with bound-
aries at x = 0, x = a, y = 0. The slab extends to infinity in the +y direction. The
boundary conditions are: (a) T = 0 at x = 0 and (b) T = 0 at x = a, for all values
of y, (c) T → 0 as y → ∞, (d) T = T0 at y = 0, for all values of x. Why are
the values of the separation constant k 2 = 0 and k 2 > 0 not appropriate for this
problem? [Include equations in your answers as required.] [5 marks]

(iv) By applying the first three boundary conditions. show that the solution is:

T (x, y) = Bn sin(nπx/a) exp(−nπy/a) ,

where n is an integer and the Bn are constants. [4 marks]

(v) Show that enforcement of the final boundary condition gives the solution:

T =
4T0

π

�

n odd

1
n

sin(nπx/a) exp(−nπy/a) .

[5 marks]

[Total 25 marks]
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4. (i) A bent coin has a probability p = 0.40 of landing tails. It is thrown N times.

(a) For N = 10, what is the probability of obtaining 3 tails? [2 marks]
(b) What is the expectation value and variance for the number of tails for N =

10? [2 marks]

The coin is now thrown N = 16 times and T = 6 tails are observed.

(c) What is the likelihood function for this measurement? Identify clearly the
parameter and the data. [3 marks]

(d) Derive the maximum likelihood estimate for the value of the probability of
tails, p, and show that it is given by pML = T/N [4 marks]

(e) By using a Gaussian approximation to the likelihood, show that the 1 sigma
uncertainty in the maximum likelihood estimate for p is given by

Σ =




N
T
N

�
1 − T

N

�




−1/2

.

[4 marks]
(f) Given the above result, estimate the number of sigma confidence with which

the hypothesis that p = 0.40 can be excluded by the above measurement.
[2 marks]

(g) If you wanted to exclude the hypothesis that p = 0.40 with at least 5 sigma
confidence, how many measurements should you make? Assume that the
numerical value of pML = T/N remains constant as N increases.

[3 marks]

(ii) State Bayes theorem as applied to the problem of inference for a parameter θ
from data d, clearly identifying each term and explaining their meaning.

[5 marks]

[Total 25 marks]
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