ANSWERS to Lecture 16 problems

1. (i) $\begin{pmatrix} 12 & 3 \\ 9 & 6 \end{pmatrix}$ (ii) 5 (iii) 45

A determinant is multiplied by f if all members of one row are multiplied by f. Therefore, if all members of <u>all n</u> rows are multiplied by f, which is what happens if the parent matrix is multiplied by f, the determinant will be multiplied by f^n .

- 2. (i) The eigenvalues are 6 and 1; the respective eigenvectors are $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$. The eigenvectors are orthogonal because the parent matrix is symmetric. Divide both eigenvectors by $\sqrt{3}$ to normalise them.
 - (ii) The eigenvalues are -2 and 4; the respective eigenvectors are $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 7 \\ 1 \end{pmatrix}$. Divide the eigenvectors by $\sqrt{2}$ and $\sqrt{50}$ respectively to normalise. Note that the eigenvectors are not orthogonal in this case.
- 3. $\mathbf{A}^2\mathbf{r} = \mathbf{A}(\mathbf{A}\mathbf{r}) = \mathbf{A}(\mathbf{A}\mathbf{r}) = \lambda \mathbf{A}\mathbf{r} = \lambda^2\mathbf{r}$. The eigenvalues of \mathbf{A}^2 are therefore the square of the eigenvalues of \mathbf{A} , and so are 4 and 16 in this case.
- 4. (i) The matrix is already diagonal, so the eigenvalues and eigenvectors are

3 and
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, 5 and $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, 27 and $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

- (ii) The eigenvalues and eigenvectors are 2 and $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, 1 and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, -1 and $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.
- (iii) The eigenvalues and eigenvectors are 3 and $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, 2 and $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, -2 and $\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$.
- 5. (i) $2\sqrt{2}$ and 45° (ii) $\sqrt{10}$ and 108.43° (iii) $2\sqrt{2}$ and -45° (iv) $4\sqrt{5}$ and 153.43° (v) $\sqrt{5/2}$ and 63.43° . (vi) $2/\sqrt{5}$ and -153.43° .
- 6. (i) 32768i (ii) 0.0028 0.0096i (iii) -32768i.

7. (i)
$$\cosh x + \sinh x = \frac{e^x + e^{-x}}{2} + \frac{e^x - e^{-x}}{2} = e^x$$

(ii)
$$\cosh x - \sinh x = \frac{e^x + e^{-x}}{2} - \frac{e^x - e^{-x}}{2} = e^{-x}$$

(iii) Multiply parts (i) and (ii).

(iv)
$$\sin iy = \frac{e^{i(iy)} - e^{-i(iy)}}{2i} = -i\frac{e^{-y} - e^{y}}{2} = i \sinh y$$
.

(v)
$$\sin(x+iy) = \frac{e^{-y+ix} - e^{y-ix}}{2i} = \frac{e^{-y}(\cos x + i\sin x) - e^{y}(\cos x - i\sin x)}{2i}$$
$$= i\cos x \frac{e^{y} - e^{-y}}{2} + \sin x \frac{e^{y} + e^{-y}}{2} = \sin x \cosh y + i\cos x \sinh y$$

8. (i)
$$\log_e(2^{i/2}) = \frac{1}{2}i\log_e 2$$
, so $2^{i/2} = e^{i(\log_e 2)/2} = e^{0.347i} = 0.941 + 0.340i$, or set $2 = e^{\log_e 2}$ at the outset.

(ii) Since
$$i = e^{i\pi/2}$$
, $\log_e i = i\pi/2$.

(iii)
$$(2^{1/2}e^{i\pi/4})^{1+i} = 2^{(1+i)/2}e^{i(1+i)\pi/4} = 2^{1/2}2^{i/2}e^{i\pi/4}e^{-\pi/4}$$
$$= 2^{1/2}e^{-\pi/4}e^{i(\pi/4+0.347)} = 0.274 + 0.584i$$