Complex Numbers 2 – ANSWERS (corrected)

- (a) $(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}})$ (b) (-2.996, 6.547) (c) (0, -1)

- 3.
- $\sqrt{41}$ and 51.34° (b) $\sqrt{53}$ and 105.95° (c) 1 and -90°
- The modulus is 5 in all cases. The arguments are respectively 4. 0.442, 2.013, 3.584 (=-2.700), 5.154 (=-1.129), and 6.725 (= 0.442)

which is where we started! Note that the numbers in brackets are obtained by subtracting 2π from the higher numbers. .

- $e^{i\pi/2}$ 5. (a)
- (b) $e^{-i\pi/2}$
- (c) $\sqrt{2} e^{i\pi/4}$
- (d) $2e^{-i\pi/3}$
- Write the following complex numbers in the form x+iy

- (a) $-\frac{(1+i)}{\sqrt{2}}$ (b) $-\frac{(1+i)}{\sqrt{2}}$ (c) (1.621+2.524i) (d) $\frac{1}{2\sqrt{3}}-\frac{i}{2}$

- (a) $e^{-i3\pi/4}$ (b) $e^{+i5\pi/4}$ (c) $3e^i$ (d) $\frac{2}{e^{i\pi/3}}$
- Set $a = \cos \theta$ and $b = i \sin \theta$. The lhs is now $(\cos 3\theta + i \sin 3\theta)$. Equate real an 7. imaginary parts to obtain

 $\cos 3\theta = \cos^3 \theta + 3\cos \theta \sin^2 \theta$ and $\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$

8. -665, -305, 55, 415, 775 & 1135; -1045, 35, 755 & 1115; -695, -335 & 25;-315 & 45. (Units are degrees)

-43 & -15; -9, 5, 19, 33 & 61; -92, 6, 20, 48 & 62; 57 & 43; -39 & 143.(Units of $\pi / 7$ radians)