Complex Numbers 2

			_			_	_
1	Dlot tha	following	complay	numbers i	n tha	complay	nlana
1.	LIOU UIE	TOHOWINE	COHIDICX	Hullibers I	n uic	COHIDICX	manc

(a)

(b) -3 + 2i (c) $(-3 + 2i)^*$ (d)

2. Find the real and imaginary parts of the complex numbers whose moduli and arguments

(a) |z| = 3.0

 $arg\{z\} = 45^{\circ}$

(b)

|z| = 7.2 arg $\{z\} = 2.0$ rad

|z| = 1.0(c)

 $arg\{z\} = -5\pi/2 \text{ rad}$

3. Find the moduli and arguments (in degrees) of

4 + 5i

(b) -2 + 7i (c) -i

If z = 3 + 4i, find the moduli and arguments (in radians) of z, iz, i^2z , i^3z , i^4z , and plot 4. them in the complex plane.

5. Write the following numbers in exponential form

(a) *i*

(b) -i

(c) 1+i

(d) $1-i\sqrt{3}$

6. Write the following complex numbers in the form x+iy

(a) $e^{-i3\pi/4}$

(b) $e^{+i5\pi/4}$ (c) $3e^{i}$ (d) $\frac{1}{\sqrt{3}e^{i\pi/3}}$

Harder ... Given that $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, derive identities for $\cos 3\theta$ and 7. $\sin 3\theta$ in terms of $\cos \theta$ and $\sin \theta$.

If you add or subtract 360° (= 2π radians) to an angle, the meaning of the angle is the 8. same. (This feature has in fact already appeared above; did you notice it?)

Which sets within the following list represent the same angle in degrees? -

55 -315

235 -695

415 -305

-135 775

35 -665 1115 -335

-345

755

-1045

25

45

1135

Which sets within the following list represent the same angle in radians? -

 $-43\pi / 7$ $19\pi / 7$ $-9\pi/7$ $61\pi/7$

 $48\pi / 7$ $57\pi/7$

 $5\pi/7$ $62\pi / 7$ $-38\pi/7$ $6\pi/7$

 $-15\pi/7$ $-39\pi/7$

 $43\pi/7$

 $-92\pi / 7$

 $33\pi/7$

 $20\pi/7$

 $143\pi / 7$

 $-4\pi/7$