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Fact Sheet M – The Eigenvalue Problem  
The eigenvalue problem is defined by the equation  

λ=Tr r               (1) 

where T is a square matrix, and r is a column matrix.  One is seeking vectors r (known as 
eigenvectors) that are unchanged in direction by T, but are simply scaled in magnitude by the factors  
λ (known as eigenvalues).  Eq.(1) can be written  

λ=Tr Ur               (2) 

or 

( ) 0λ− =T U r              (3) 

where U is the unit matrix.   

For a 2×2 system, eq.(1) reads 
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and eq.(3) becomes 
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If you are unconvinced by eq.(5), try writing out eq.(4) in full!   

Eq.(5) represents the two homogeneous linear equations 
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These equations have a solution (other than the trivial solution x = y = 0) if and only if  the determinant 
of the coefficients is zero i.e.  
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or in other words 
2 ( ) ( )a d ad bcλ λ− + + − = .           (8) 

The two roots of this quadratic equation are 

2( ) ( ) 4
2

a d a d bc
λ

+ ± − +
=            (9) 

and are the two eigenvalues of T.   

In the case treated in Lecture 15, 
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now be inserted in turn in eqs.(6) to find the eigenvectors.  One obtains  
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where the final step in each case gives the eigenvector in normalised form.   

Note that eq.(4) can be written  
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These last two equations can be combined to read 
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or  

TV = VD               (15) 

where V is the matrix of the eigenvectors 1 2
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. Multiplying both sides of eq.(15) from the left by the inverse of V yields 

-1V TV = D              (16) 

The matrices T and D are said to be “similar”, and V is said to “diagonalise” T in a “similarity 
transformation”.  Note that eq.(14) applies irrespective of whether the eigenvectors have been 
normalised before the formation of V.  However, in the special case where T is symmetric (i.e. b = c 
as in the numerical example given above), it can be shown that  are orthogonal.  If the 
vectors are used in normalised form in this case, then V becomes an orthogonal matrix, in which case 
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which checks out nicely.    

Note that for a 3×3 system, eq.(8) becomes a cubic equation, for a 4×4 system, it’s a quartic and so on.  
If you are asked to solve a cubic equation in a problem sheet or examination, you can be confident that 
the roots are small integers, so you only have to spot one of them ( 1λ ), divide out the factor 1( )λ λ− , 
and solve the remaining quadratic for the other two roots.       

 


