Fact Sheet F

Directions, Lines and Planes

- A unit vector defining a particular direction may be written
$\hat{\mathbf{d}}=\frac{x}{r} \mathbf{i}+\frac{y}{r} \mathbf{j}+\frac{z}{r} \mathbf{k}=\cos \alpha \mathbf{i}+\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}=\ell \mathbf{i}+m \mathbf{j}+n \mathbf{k}$ where ℓ, m, and n are the direction cosines of $\hat{\mathbf{d}}$ as indicated. Note that $\sqrt{\ell^{2}+m^{2}+n^{2}}=1$
- To find the direction cosines of a vector that is not a unit vector, divide by its magnitude to obtain a unit vector in the same direction (see Fact Sheet A). For example, for the vector $\mathbf{d}=2 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$, divide by $\sqrt{29}$ to obtain the unit vector $\hat{\mathbf{d}}=\frac{2}{\sqrt{29}} \mathbf{i}+\frac{4}{\sqrt{29}} \mathbf{j}+\frac{3}{\sqrt{29}} \mathbf{k}$. The coefficients of \mathbf{d} (i.e. 2, 4 and 3) are called direction ratios, and the coefficients of $\hat{\mathbf{d}}$ are the direction cosines .
- The angle between two unit vectors can be found from
$\hat{\mathbf{d}}_{\mathbf{1}} \cdot \hat{\mathbf{d}}_{\mathbf{2}}=\cos \theta=\ell_{1} \ell_{2}+m_{1} m_{2}+n_{1} n_{2}$
The angle between two arbitrary vectors \mathbf{A} and \mathbf{B} follows from
$\cos \theta=\hat{\mathbf{a}} . \hat{\mathbf{b}}=\frac{\mathbf{A} . \mathbf{B}}{|\mathbf{A}||\mathbf{B}|}=\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{|\mathbf{A}||\mathbf{B}|}=\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \sqrt{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}}$
- There are several ways of writing the equation of \underline{a} straight line in $2 D$. A line with gradient g and y-axis intercept h is given by
$y=g x+h$
A line passing through (x_{0}, y_{0}) in a direction defined by ℓ and m is given by
$\frac{x-x_{0}}{\ell}=\frac{y-y_{0}}{m}$
A line passing through $\mathbf{r}_{0}=\left(x_{0}, y_{0}\right)$ in a direction $\hat{\mathbf{d}}$ is given by
$\mathbf{r}=\mathrm{r}_{\mathbf{0}}+\lambda \hat{\mathbf{d}}$
where λ is a variable parameter.
A straight line can also be specified in the form
$a x+b y=k$
In this case, a and b are the direction ratios of the normal, i.e. the vector drawn normal to the line from the origin. Divide all terms in the equation by $\sqrt{a^{2}+b^{2}}$ to obtain
$\underbrace{\frac{a}{\sqrt{a^{2}+b^{2}}}}_{\ell^{\prime}} x+\underbrace{\frac{b}{\sqrt{a^{2}+b^{2}}}}_{m^{\prime}} y=\frac{k}{\sqrt{a^{2}+b^{2}}}=p$
The coefficients of x and y are now the direction cosines of the normal vector and p is the length of the normal i.e. the perpendicular distance from the origin to the line. Since the normal is (by definition) perpendicular to the line, it follows that

$$
\ell \ell^{\prime}+m m^{\prime}=0
$$

- \quad The equation of a plane in 3D is
$a x+b y+c z=k$
where, by analogy with the case of a line in 2D above, a, b, and c are the direction ratios of the vector drawn normal to the plane from the origin. Divide through by $\sqrt{a^{2}+b^{2}+c^{2}}$ to obtain
$\underbrace{\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{\ell^{\prime}} x+\underbrace{\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{m^{\prime}} y+\underbrace{\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{n^{\prime}} z=\frac{k}{\sqrt{a^{2}+b^{2}+c^{2}}}=p$
where p is now the perpendicular distance from the origin to the plane.
- The equation of a straight line in $3 D$ is

$$
\frac{x-x_{0}}{\ell}=\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}
$$

