Linear Equations, Matrices And Determinants
Consider a system of two linear equations with two unknowns’ i.e.
1(a)
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1(b)

[image: image2.wmf]2

2

22

1

21

b

x

a

x

a

=

+


The geometric interpretation allows us to think about the system as representing two lines in R2. If the two lines intersect at (x1,x2), this is a unique solution to the equation. If the two lines are parallel, either there are no solutions, or there is a set of infinitely many solutions (parallel lines one on top of each other, which is when 1(a) and 1(b) are proportional).

Let us now solve equation 1:

Multiplying 1(a) by a22 and 1(b) with a12 we get:

2(a)
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2(b)
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Subtracting 2(b) from 2(a):
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Assuming 
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we find:
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3(a & b)
Cramer’s Rule
Solving n linear equations with n unknowns x11,x21,…,xn1 we need a systematic approach.

Consider a system of n linear equations with n unknowns.
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(4)

Where aij, is defined by i,j=1,2,…,n are constants and so are bi i=1,2,…n
The LHS of (4) is completely determined by the array of coefficients.
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 this is called a matrix.

The horizontal lines in the matrix are called rows (we have n rows).

The vertical lines in the matrix are called columns (we have n columns).

Its shape is (# rows) x (# columns), so in our case we have an n x n matrix. The number aij (where i is the row and j is the column) is the ijth entry / element in 
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.
We may also introduce the column vectors.
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These are n x 1 matrices.
We can write (4) in matrix form:
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 EMBED Equation.3  [image: image14.wmf]
To do so we need to define matrix multiplication.

Let 
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be an m x n matrix and let 
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be an n x m matrix. Then the matrix product 
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is an n x m matrix 
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 where the ijth entry is:
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Where aik are elements from the ith row in 
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 and bik are elements from the jth column in 
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To move on, we need to introduce the determinate of an n x m matrix. 
We still define the determinate of a square matrix inductivity. We define the 
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1x1 Matrix
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2 x 2 Matrix
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Consider an n x n matrix 
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 and define the ijth minor of the matrix 
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 as the 

(n-1) x (n-1) matrix obtained by eliminating the ith row and jth column in 
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e.g.
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Then the entry at a23 is 1 and the minor 
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Let
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Then 
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The signs are simply determined by
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e.g.
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Now Cramer’s Rule says that, for 
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there is a unique solution to the system if n equation with n unknowns. The solutions are:
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Where 
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is the matrix of coefficients and Bj is the n x n matrix obtained by substituting the jth column with b
Cramer’s Rule

Consider a system of two linear equations, with the unknowns x1, x2
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Then
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We now have
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If 
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, a unique solution exists and by Cramer’s Rule,
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Geometric Interpretation

For the system to have a solution, 
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The vector 
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is normal to line 2. We now rotate n2 by 
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and get d2 = (a22 – a21) and we get:

· n1 is parallel to n2
· n1 is perpendicular to d2
· n1 . d2 = a11a22 – a12a21 = 0

Consider a system of 3 linear equations:

[image: image47.wmf]3

3

2

2

1

4

2

3

2

1

3

2

1

3

1

1

=

-

+

=

-

+

-

=

+

-

x

x

x

x

x

x

x

x

x



[image: image48.wmf]Þ



[image: image49.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

-

-

3

2

1

1

3

2

1

1

1

4

2

1

3

2

1

x

x

x



[image: image50.wmf](

)

0

12

2

3

4

)

2

1

(

2

)

3

1

(

det

3

2

1

1

.

4

.

)

1

(

1

2

1

1

.

2

.

)

1

(

1

3

1

1

.

1

.

)

1

(

1

3

2

1

1

1

4

2

1

det

3

1

2

1

1

1

¹

-

=

-

-

+

+

+

+

-

=

-

-

+

-

-

-

-

-

+

-

-

-

=

-

-

-

-

=

+

+

+

A

A


And, by Cramer’s Rule:
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Geometrical Interpretation Of R3
The 3 equations specify a plane each with normal vectors:
n1 = (a11,a12,a13)
n2 = (a21,a22,a23)
n3 = (a31,a32,a33)

Also,
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Which means:

n2 is parallel to n2
n1 is perpendicular to (n2 x n3) 

Method Of Gauss Elimination
Theorem:
The solution of linear equation foes not change by applying the following operations:
· Changing the order of the equations

· Multiplying all terms in one equation by a factor 
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· Adding a multiple of any equation to any other equation.

i.e.
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Thus x3 = 11/6

x2 = 3 + 3 x 11/6 = 5 / 2
x1 = -5 + 2 x 11/6 = - 4/3 
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