Ordinary Differential Equations
The first derivative of x(t) is given by:
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If the limit exists at t0, x(t) is differentiable.

Graphically 
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is the slope / gradient of the graph.

Many physical phenomena are descried by rates i.e. derivatives.

An equation containing a derivative is a differential equation.

A differential equation containing a partial derivative is called a partial differential equation. Otherwise, it is an ordinary differential equation with only functions of one variable.

e.g.

Newton’s Second Law


Radioactive Decay
F 
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If N(t) is the number of radioactive
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nuclei at time t, then:
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The order of any ordinary differential equation is the order of the highest derivative. Hence a first order ordinary differential equation contains no second order (or higher) derivatives.

First Order Differential Equations

The general form is:
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Where x is a function of t we are trying to find.

t: Independent variable

x: Dependent variable

x(t) is a solution to 
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 if it satisfies it.

We will solve this equation for different cases.

Case A: F Is Function Of T Only.
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Where 
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is by definition a function with derivative f(t)

e.g. A particle falling under gravity.
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The solution is 
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Where c is a constant of integration.

This is a general solution. The integration constant c is determined by applying boundary conditions (initial conditions), e.g. t=0, x(t)=c, so
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Case B: F Is Linear In X, With Constants A And B.
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To find the solution we multiply the differential equation by the integration factor eat.
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Which is in the form of Cases A, hence
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C can again be found by applying boundary / initial conditions.

Case C     F(x,t) = f(t) – ax
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Proceeding as in B we get:


[image: image17.wmf]ò

ò

=

=

=

+

dt

e

t

f

dt

xe

dt

d

e

t

f

xe

dt

d

e

t

f

axe

e

dt

dx

at

at

at

at

at

at

at

)

(

)

(

)

(

)

(



[image: image18.wmf]ò

=

dt

e

t

f

xe

at

at

)

(



[image: image19.wmf]ò

-

=

dt

e

t

f

e

t

x

at

at

)

(

)

(


So we mist be able to solve the integral if we want to find a solution

Case D 
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We apply separation of variables and we get:
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A is a special case of D, setting g(x) = 1, so that we get 
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B is a special case of D, setting f(t)=1 and g(x)=b-ax

We can evaluate case B using indefinite or definite integrals.
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Using indefinite integrals
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We now apply boundary conditions to determine c, at x(t0)=x0
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So:
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Using definite integrals
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