Miscellany

1. If $\mathbf{M}=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$, write down (i) $3 \mathbf{M}$, (ii) $\operatorname{det}\{\mathbf{M}\}$, (iii) $\operatorname{det}\{3 \mathbf{M}\}$.

Show that, in general, $\operatorname{det}\{f \mathbf{M}\}=f^{n} \operatorname{det}\{\mathbf{M}\}$ where f is a factor, and \mathbf{M} is an $n \times n$ matrix.
2. Find the eigenvalues and eigenvectors of (i) $\left(\begin{array}{cc}5 & -2 \\ -2 & 2\end{array}\right)$ and (ii) $\left(\begin{array}{ll}5 & -7 \\ 1 & -3\end{array}\right)$.

In one case, the eigenvectors are orthogonal. How is this fact related to the structure of the matrix?
3. If $\mathbf{A}=\left(\begin{array}{ll}5 & -7 \\ 1 & -3\end{array}\right)$ (see question 2(ii)), deduce the eigenvalues of \mathbf{A}^{2}.
4. Find the eigenvalues and eigenvectors of
(i) $\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 27\end{array}\right)$,
(ii) $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0\end{array}\right)$,
(iii) $\left(\begin{array}{ccc}2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & -1\end{array}\right)$.
5. If $z_{1}=2+2 i$ and $z_{2}=-1+3 i$, deduce the modulus and argument (in degrees) of
(i) Z_{1}
(ii) z_{2}
(iii) z_{1}^{*}
(iv) $z_{1} Z_{2}$
(v) z_{2} / z_{1}
(vi) z_{1}^{*} / z_{2}.
6. For the same values of z_{1} and z_{2} as in question 5, find
(i) z_{1}^{10}
(ii) z_{2}^{-4}
(iii) $\left(z_{1}^{*}\right)^{10}$. Express the answers in the form $x+i y$.
7. Show that
(i) $e^{x}=\cosh x+\sinh x$
(ii) $e^{-x}=\cosh x-\sinh x$
(iii) $\cosh ^{2} x-\sinh ^{2} x=1$ (iv) $\sin (i y)=i \sinh y$
(v) $\sin (x+i y)=\sin x \cosh y+i \cos x \sinh y$.
8. Find (i) $2^{i / 2}$
(ii) $\log _{e} i$
(iii) $(1+i)^{(1+i)}$.

Care and patience is needed with part (iii). Start by writing $(1+i)$ in exponential form. The answer to part (i) will come in useful.

