Miscellany

1. If $\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$, write down (i) $3\mathbf{M}$, (ii) det{ \mathbf{M} }, (iii) det{ $3\mathbf{M}$ }.

Show that, in general, det{ $f\mathbf{M}$ } = $f^n det{\mathbf{M}}$ where f is a factor, and \mathbf{M} is an $n \times n$ matrix.

2. Find the eigenvalues and eigenvectors of (i) $\begin{pmatrix} 5 & -2 \\ -2 & 2 \end{pmatrix}$ and (ii) $\begin{pmatrix} 5 & -7 \\ 1 & -3 \end{pmatrix}$.

In one case, the eigenvectors are orthogonal. How is this fact related to the structure of the matrix?

- 3. If $\mathbf{A} = \begin{pmatrix} 5 & -7 \\ 1 & -3 \end{pmatrix}$ (see question 2(ii)), deduce the eigenvalues of \mathbf{A}^2 .
- 4. Find the eigenvalues and eigenvectors of

(i)
$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 27 \end{pmatrix}$$
, (ii) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, (iii) $\begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & -1 \end{pmatrix}$

5. If $z_1 = 2 + 2i$ and $z_2 = -1 + 3i$, deduce the modulus and argument (in degrees) of

(i)
$$z_1$$
 (ii) z_2 (iii) z_1^* (iv) $z_1 z_2$ (v) z_2 / z_1 (vi) z_1^* / z_2 .

6. For the same values of z_1 and z_2 as in question 5, find

(i)
$$z_1^{10}$$
 (ii) z_2^{-4} (iii) $(z_1^*)^{10}$. Express the answers in the form $x + iy$.

7. Show that (i) $e^x = \cosh x + \sinh x$ (ii) $e^{-x} = \cosh x - \sinh x$

(iii)
$$\cosh^2 x - \sinh^2 x = 1$$
 (iv) $\sin(iy) = i \sinh y$

- (v) $\sin(x+iy) = \sin x \cosh y + i \cos x \sinh y$.
- 8. Find (i) $2^{i/2}$ (ii) $\log_e i$ (iii) $(1+i)^{(1+i)}$.

Care and patience is needed with part (iii). Start by writing (1 + i) in exponential form. The answer to part (i) will come in useful.