Lines, Planes, Rotations - ANSWERS

1. (a)

$$
\mathbf{n}=5 \mathbf{i}-4 \mathbf{j}-3 \mathbf{k},|\mathbf{n}|=\sqrt{50} \text {, so } \hat{\mathbf{n}}=\frac{5 \mathbf{i}-4 \mathbf{j}-3 \mathbf{k}}{\sqrt{50}}=\frac{5}{\sqrt{50}} \mathbf{i}-\frac{4}{\sqrt{50}} \mathbf{j}-\frac{3}{\sqrt{50}} \mathbf{k} .
$$

(b) When the equation of the plane is written in the form $\frac{5 x-4 y-3 z}{\sqrt{50}}=\frac{10}{\sqrt{50}}=\sqrt{2}$, the rhs is the shortest distance to the plane from the origin; see Fact Sheet F.
(c) Choose any point on the plane, say $(2,0,0)$. The vector from $(1,3,5)$ to $(2,0,0)$ is $\mathbf{V}=\mathbf{i}-3 \mathbf{j}-5 \mathbf{k}$. The formula for the shortest distance is $s=|\mathbf{V} \cdot \hat{\mathbf{n}}|=\frac{32}{\sqrt{50}}$.
2. We will refer to the normal \mathbf{n} from the previous question as \mathbf{n}_{1}. A normal to the second plane is $\mathbf{n}_{2}=-2 \mathbf{i}+\mathbf{j}+\mathbf{k}$. The direction of the line of intersection is therefore $\mathbf{n}_{1} \times \mathbf{n}_{2}=\mathbf{d}=-\mathbf{i}+\mathbf{j}-3 \mathbf{k}$.
A point that lies on both planes (and therefore on the line of intersection) is ($-6,-10$, 0). The vector equation of the line is therefore $\mathbf{r}=(-6 \mathbf{i}-10 \mathbf{j})+\lambda(-\mathbf{i}+\mathbf{j}-3 \mathbf{k})$. In terms of components, this is
$\frac{x+6}{-1}=\frac{y+10}{1}=\frac{z}{-3}=\lambda$.
3. The equation $x-2 y-z=14$ is a linear combination of the equations of the other two planes (the first plus twice the second). It will therefore share the same line of intersection.
4. The line has direction $\mathbf{d}=7 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$ and it follows that $\hat{\mathbf{d}}=\frac{7 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}}{\sqrt{74}}$. The vector from (1, $-2,0$) to e.g. $(-2,1,2)$ is $\mathbf{V}=-3 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$. The shortest distance is $s=|\mathbf{V} \times \hat{\mathbf{d}}|=\left|\frac{\mathbf{i}+23 \mathbf{j}-33 \mathbf{k}}{\sqrt{74}}\right|=\sqrt{\frac{1619}{74}}$.
5. The vector from the reference point of the first line to the reference point of the second is $\mathbf{V}=(\alpha-1) \mathbf{i}-\mathbf{j}-2 \mathbf{k}$. The lines intersect when \mathbf{V} and the two direction vectors are coplanar i.e. when $\left|\begin{array}{ccc}\alpha-1 & -1 & -2 \\ 3 & 2 & 1 \\ 2 & -3 & -4\end{array}\right|=0$. It follows that $\alpha=17 / 5$.
6.
(a) $\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)$
(b) $X=7 x-4 y, \quad Y=2 x$.
7. (a) $\left(2, \frac{1}{2}\right)$
(b) $(6,3)$
(c) $(2,-1)$.
8.
(a) $\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)$
(c) $\left(\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right)$
9. (a) $\left(\begin{array}{c}-1 / \sqrt{2} \\ 3 / \sqrt{2} \\ 3\end{array}\right) \quad$ (b) $\left(\begin{array}{c}3 / \sqrt{2} \\ 1 / \sqrt{2} \\ 3\end{array}\right)$.
10. $\left(\begin{array}{c}2 \sqrt{2} \\ 1+\sqrt{2} \\ 1-\sqrt{2}\end{array}\right)$

