Homogeneous Equations, Triple Products, Linear Independence

1. Determine which of following pairs of homogeneous equations have a non-trivial solution and, in those cases that do, find the equation of the line that represents the solution
(a) $3 x+5 y=0, \quad 2 x+4 y=0$.
(b) $3 x-5 y=0, \quad 7 x+2 y=0$.
(c) $6 x+3 y=0, \quad 4 x+2 y=0$.
(d) $1.4 x-1.2 y=0,-2.1 x+1.8 y=0$.
2. Determine which of following sets of homogeneous equations have a non-trivial solution,
(a) $\quad 8 x+y+8 z=0, \quad 6 x+4 y+4 z=0, \quad 5 x-y+6 z=0$.
(b) $5 p+2 q+2 r=0, \quad p-q+4 r=0, \quad 7 p+r=0$.
(c)

$$
\begin{array}{ll}
12 x_{1}-16 x_{2}+2 x_{3}+8 x_{4}=0, & -6 x_{1}+6 x_{2}+14 x_{3}-3 x_{4}=0, \\
10 x_{1}+10 x_{2}-7 x_{3}-5 x_{4}=0, & 11 x_{1}-18 x_{2}+2 x_{3}+9 x_{4}=0 .
\end{array}
$$

3. If $\mathbf{A}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}, \mathbf{B}=7 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$, and $\mathbf{C}=4 \mathbf{i}+5 \mathbf{k}$, find the following triple vector products:
(a) $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$,
(b) $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$.
4. Three vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} are "linearly dependent" if it is possible to write one as a linear combination of the other two, i.e. $\mathbf{A}=p \mathbf{B}+q \mathbf{C}$. Three vectors are "linearly independent" if it is not possible to do this.
(a) Show that the vectors defined in question 3 are linearly independent.
(b) What does linear dependence or independence imply about the determinant formed from the components of the three vectors?
(c) The vector $\alpha \mathbf{i}$ is now added to \mathbf{A}. What value of α makes the three vectors linearly dependent?
5. Show that for any three vectors \mathbf{A}, \mathbf{B}, and \mathbf{C}

$$
\mathbf{A} \times(\mathbf{B} \times \mathbf{C})+\mathbf{B} \times(\mathbf{C} \times \mathbf{A})+\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=0
$$

