Matrices

The matrices \mathbf{A}, \mathbf{B}, and \mathbf{C} in questions 1-3 are

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 3 \\
4 & 6
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{cc}
2 & -1 \\
5 & 4
\end{array}\right) \quad \mathbf{C}=\left(\begin{array}{cc}
-4 & 2 \\
0 & 1
\end{array}\right)
$$

1. Find the matrices given by (a) $3 \mathbf{A} \quad$ (b) $\mathbf{A}+\mathbf{B} \quad$ (c) $3 \mathbf{B}-2 \mathbf{C}$.
2. If the vector $\mathbf{r}_{0}=\binom{3}{4}$,
find (a) $\mathbf{r}_{1}=\mathbf{A r}_{0}$
(b) $\mathbf{r}_{2}=\mathbf{B r}_{0}$
(c) $\mathbf{r}_{3}=\mathbf{r}_{1}+\mathbf{r}_{2}$
(d) $\mathbf{r}_{4}=(\mathbf{A}+\mathbf{B}) \mathbf{r}_{0}$

Think about the answers to parts (c) and (d).
3. Find the matrices
(a) $\mathbf{A B}$ (b) $\mathbf{B C}$ (c) $\mathbf{C B}$
(d) $\mathbf{A C}$ (e) (AB)C (f)
$\mathbf{A}(\mathbf{B C})(\mathrm{g})(\mathbf{A}+\mathbf{B}) \mathbf{C}(\mathrm{h}) \mathbf{A C}+\mathbf{B C}$
4. If $\mathbf{D}=\left(\begin{array}{cccc}2 & 3 & 1 & -4 \\ 2 & 1 & 0 & 5\end{array}\right) \quad \mathbf{E}=\left(\begin{array}{cc}2 & 4 \\ 1 & -1 \\ 3 & -1\end{array}\right) \quad \mathbf{F}=\left(\begin{array}{ccc}2 & 1 & 3 \\ 4 & -1 & -2 \\ -1 & 0 & 1\end{array}\right)$, either calculate or discard as meaningless all six products of two of the matrices.
5. Find the inverse of $\left(\begin{array}{ll}9 & 6 \\ 5 & 3\end{array}\right)$. No sophistication is needed; just slog it out!
6. Find the vector resulting from the counter-clockwise rotation of \mathbf{r}_{0} in question 2 by 60°.

