ANSWERS for Lecture 7 problems

1. (a) $\left|\begin{array}{ll}4 & 2 \\ 1 & 5\end{array}\right|=18$.
(b) $\left|\begin{array}{ll}4 & 1 \\ 2 & 5\end{array}\right|=+18$; rows and columns have been exchanged.
(c) $\left|\begin{array}{ll}1 & 5 \\ 4 & 2\end{array}\right|=-18$; the rows have been reversed, leading to a sign change.
(d) $\left|\begin{array}{ll}8 & 2 \\ 2 & 5\end{array}\right|=36$; the top row of the determinant in (a) has been doubled.
(e) $\left|\begin{array}{ll}4 & 2 \\ 4 & 2\end{array}\right|=0$; two identical rows.
(f) $\left|\begin{array}{ll}4 & 2 \\ 5 & 7\end{array}\right|=18$; row 1 of (a) has been added to row 2 .
2. (a) $\begin{aligned} & 3 x+5 y=14 \\ & 2 x+4 y=10\end{aligned} ; x=3$ and $y=1$
(b) $\begin{gathered}3 x-5 y=8 \\ 7 x+2 y=12\end{gathered} ; x=\frac{76}{41}$ and $y=-\frac{20}{41}$
(c) no solution; the equations represent the same line.
(d) no solution; the lines are parallel.
3. (a) no solution; the determinant of the coefficients is zero.
(b) the solution is a line. (c) yes; the determinant of the coefficients $=32$.
4. (a) 50 .
(b) 10 .
(c) $240=$ the product of the diagonal elements.
(b) Working it out directly shows that the determinant is zero. A clever way to deduce this result is to note that, if you multiply each row in turn by -1 and then exchange rows and columns, the original determinant is recovered. But since, in general, this operation should reverse the sign, the value can only be zero!
