Simultaneous Linear Equations & Determinants

1. Evaluate (a) $\begin{vmatrix} 4 & 2 \\ 1 & 5 \end{vmatrix}$ and (b) $\begin{vmatrix} 4 & 1 \\ 2 & 5 \end{vmatrix}$.

Note that the second is obtained from the first by exchanging rows and columns.

Now evaluate each of the following 2×2 determinants, and decide how each is related to the determinants of parts (a) and (b):

- (c) $\begin{vmatrix} 1 & 5 \\ 4 & 2 \end{vmatrix}$ (d) $\begin{vmatrix} 8 & 2 \\ 2 & 5 \end{vmatrix}$ (e) $\begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$ (f) $\begin{vmatrix} 4 & 2 \\ 5 & 7 \end{vmatrix}$
- 2. For each of the following pairs of equations, identify those that have a unique solution, and use Cramer's rule to find the solutions:

(a)
$$3x+5y=14$$
 (b) $3x-5y=8$ (c) $6x+3y=9$ (d) $1.4x-1.2y=6.4$ $-2.1x+1.8y=-4.7$

3. Determine whether the following sets of linear equations have a unique solution

$$8x + y + 8z = 12$$
(a) $6x + 4y + 4z = 8$
 $5x - y + 6z = 15$
(b) $4x + 7y - 2z = 10$
 $x - 3y + 2z = 6$
(c) $2x - 2y + 2z = 0$
 $4x - 4y - 4z = -1$

4. Evaluate (a) $\begin{vmatrix} 4 & 1 & 2 \\ 7 & 2 & 0 \\ -2 & 3 & 0 \end{vmatrix}$ (b) $\begin{vmatrix} 3 & 2 & 4 \\ 5 & 4 & 8 \\ 8 & 2 & 9 \end{vmatrix}$