ANSWERS to Lecture 5 problems (Geometry 1)

1. A possible equation for line A is $\mathbf{r}=(3 \mathbf{i}+4 \mathbf{j})+\lambda\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)=(3+5 \lambda) \mathbf{i}+(4-9 \lambda) \mathbf{j}$, but note that the first vector on the rhs could be the position vector of any point on the line. This leads to
$x=3+5 \lambda$
$y=4-9 \lambda$
and the result follows if λ is eliminated.
2. A possible equation for line B is $\mathbf{r}=\mu \mathbf{i}+(-2+3 \mu) \mathbf{j}$ which corresponds to $x=\frac{y+2}{3}$
3. The direction ratios of line A are $(5,-9)$ and the corresponding direction cosines are $\left(\frac{5}{\sqrt{106}}, \frac{-9}{\sqrt{106}}\right)$.

The direction ratios of line B are $(1,3)$ and the corresponding direction cosines are $\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$.
4. Reverse the direction cosines and reverse the sign of one of them. This leads to $\hat{\mathbf{n}}_{1}=\frac{9}{\sqrt{106}} \mathbf{i}+\frac{5}{\sqrt{106}} \mathbf{j}$ and $\quad \hat{\mathbf{n}}_{2}=\frac{3}{\sqrt{10}} \mathbf{i}-\frac{1}{\sqrt{10}} \mathbf{j}$
5. The angle between the lines is the same as the angle between the normals. The result is $\cos \theta=\frac{22}{\sqrt{1060}}=0.676$ yielding $\theta=0.828 \mathrm{rad}=47.5^{\circ}$.
6. The perpendicular distance to line A is $p_{1}=\hat{\mathbf{n}}_{1} . \mathbf{r}_{1}$ where \mathbf{r}_{1} is any position vector on the line. The answer is $\frac{47}{\sqrt{106}}$. The corresponding result for line B is $\frac{2}{\sqrt{10}}$.
7. $\mathbf{r}=(2+5 \lambda) \mathbf{i}+(1-3 \lambda) \mathbf{j}+(-3+7 \lambda) \mathbf{k}$. Eliminating λ between the component equations yields $\frac{x-2}{5}=-\frac{y-1}{3}=\frac{z+3}{7}$.

