Vectors 1

1. Write the following vectors (in 3D space) in component form:
(a) $2 \mathbf{i}+3 \mathbf{j}$
(b) $17 \mathbf{i}-4 \mathbf{j}-\mathbf{k}$
(c) \mathbf{j}
(d) $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$
2. If a vector \mathbf{A} has components (3, $-1,-2$), write \mathbf{A} in terms of \mathbf{i}, \mathbf{j}, and \mathbf{k}.

Repeat for a vector with components ($0,0,7$).
3. Find the magnitudes of the vectors in question 1.
4. If $\mathbf{p}=4 \mathbf{i}+2 \mathbf{j}$ and $\mathbf{q}=-\mathbf{i}+3 \mathbf{k}$, find the vectors
(a) $-\mathbf{p}$
(b) $2 \mathbf{q}$
(c) $\mathbf{p}+\mathbf{q}$
(d) $3 \mathbf{p}-5 \mathbf{q}$
5. Find the unit vectors corresponding to the four vectors (a)-(d) of question 4.
6. The position vectors of points A and B in the $x-y$ plane have components $(2,1)$ and $(3,5)$ respectively. Find (a) the vector $\overrightarrow{A B}$, (b) the vector $\overrightarrow{B A}$, (c) the length of these vectors, and (d) the position vector of the mid-point of $A B$.
7. Point P has position vector $3 \mathbf{i}+5 \mathbf{j}$. What is the angle between $\overrightarrow{O P}$ and the x-axis?
8. In the parallelogram shown, $\overrightarrow{P Q}=\mathbf{a}$ and $\overrightarrow{P S}=\mathbf{b}$.

(a) In terms of a and \mathbf{b}, write down $\overrightarrow{S R}, \overrightarrow{R Q}, \overrightarrow{P R}$, and $\overrightarrow{S Q}$.
(b) Defining point M as the mid-point of $\overrightarrow{P R}$, and point N as the mid-point of $\overrightarrow{S Q}$, find $\overrightarrow{P M}$ and $\overrightarrow{P N}$ in terms of \mathbf{a} and \mathbf{b}.
(c) What property of a parallelogram can you deduce from the result of (b)?

