Final Course Outline

Part I - Basics

0. Coordinate Systems (Fact Sheet B)
1. Vectors 1 (Fact Sheet A)
A. Definition
B. Components
C. Simple multiplication and unit vectors
D. Position vectors
E. Addition and subtraction
2. Complex numbers 1 (Fact Sheet C)

Lecture 2
A. Definition: real and imaginary parts
B. The complex plane: Cartesian and polar form of complex numbers
C. Simple operations (addition, multiplication etc.)
D. Complex conjugation
E. The division trick
F. Example: a quadratic equation
3. Complex numbers 2 (Fact Sheet C)

Lecture 3
A. Euler's equation for the exponential form of complex numbers
B. Operations with the exponential form
C. Exploring the unit circle
4. Vectors 2 (Fact Sheet E)

Lecture 4
A. The dot (or scalar) product
B. The cross (or vector) products
C. Applications
5. Geometry 1 (Fact Sheets D \& F)

Lecture 5
A. Direction

B Equations of a straight line (in 2D)
C. The third dimension

Lecture 6
6. Linear equations 1 (Fact Sheets $G \& L$)

A 2 equations in 2 unknowns (2 straight lines)
B. 3 equations in 3 unknowns (3 planes)

Lecture 7
7. Determinants (Fact Sheet H \& B)
A. Cramer's rule and the determinant of the coefficients
B. Evaluation of 3×3 determinants

Lecture 8

C. General properties of determinants
D. Exploiting the properties
E. Machinery for bigger systems: double suffix notation Lecture 9
8. Matrices (Fact Sheet I)
A. Basic definition: vectors as matrices
B. Matrices in context: matrix multiplication rule

Lecture 10
C. Matrix types and properties
D. Minors and cofactors

Lecture 11

Part II - Development

9. Linear Equations revisited (Fact Sheet J)
A. Matrix inversion
B. The singular case

Lecture 12
B. The homogeneous case
10. Vectors revisited (Fact Sheet K)
A. The cross (vector) product with determinants

B The triple scalar product
C. The triple vector product
11. Geometry revisited

Lecture 13
A. Intersection of planes
B. Shortest distance from a point to a plane
C. Shortest distance from a point to a line
D. Shortest distance between two skew lines

12. Matrices revisited

Lecture 14

A. Rotation matrices in 2D
B. Linear transformations: stretch and shrink
C. Rotation matrices in 3D
D. Orthogonal matrices
E. The eigenvalue problem

Lecture 15
F. Diagonalisation
G. A 3×3 example
H. The matrices of quantum mechanics
13. Complex numbers revisited

Lecture 16
A. Powers and roots of complex numbers
B. Applications of complex numbers
14. Review

