Fact Sheet M - The Eigenvalue Problem

The eigenvalue problem is defined by the equation
$\mathbf{T r}=\lambda \mathbf{r}$
where \mathbf{T} is a square matrix, and \mathbf{r} is a column matrix. One is seeking vectors \mathbf{r} (known as eigenvectors) that are unchanged in direction by \mathbf{T}, but are simply scaled in magnitude by the factors λ (known as eigenvalues). Eq.(1) can be written
$\mathbf{T r}=\lambda \mathbf{U r}$
or
$(\mathbf{T}-\lambda \mathbf{U}) \mathbf{r}=0$
where \mathbf{U} is the unit matrix.
For a 2×2 system, eq.(1) reads
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}=\lambda\left[\begin{array}{l}x \\ y\end{array}\right]$
and eq.(3) becomes
$\left(\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right)\binom{x}{y}=0$
If you are unconvinced by eq.(5), try writing out eq.(4) in full!
Eq.(5) represents the two homogeneous linear equations
$(a-\lambda) x+b y=0$
$c x+(d-\lambda) y=0$
These equations have a solution (other than the trivial solution $x=y=0$) if and only if the determinant of the coefficients is zero i.e.
$\left|\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right|=(a-\lambda)(d-\lambda)-b c=0$
or in other words
$\lambda^{2}-(a+d) \lambda+(a d-b c)=0$.
The two roots of this quadratic equation are
$\lambda=\frac{(a+d) \pm \sqrt{(a-d)^{2}+4 b c}}{2}$
and are the two eigenvalues of \mathbf{T}.
In the case treated in Lecture $15, \mathbf{T}=\left(\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right)$ and $\lambda_{1,2}=\frac{10 \pm 2}{2}=6$ or 4 . These eigenvalues must now be inserted in turn in eqs.(6) to find the eigenvectors. One obtains
$\lambda_{1}=6 ; \quad x_{1}+y_{1}=0 ; \quad \mathbf{v}_{1}=\binom{1}{-1} ; \quad \hat{\mathbf{v}}_{1}=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}$,
$\lambda_{2}=4 ; \quad x_{2}-y_{2}=0 ; \quad \mathbf{v}_{2}=\binom{1}{1} ; \quad \hat{\mathbf{v}}_{2}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$,
where the final step in each case gives the eigenvector in normalised form.
Note that eq.(4) can be written
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x_{1}}{y_{1}}=\lambda_{1}\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x_{2}}{y_{2}}=\lambda_{2}\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$
These last two equations can be combined to read

$$
\left(\begin{array}{ll}
a & b \tag{14}\\
c & d
\end{array}\right)\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

or
$T V=V D$
where \mathbf{V} is the matrix of the eigenvectors $\mathbf{T}=\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$ and \mathbf{D} is the diagonal matrix of the eigenvalues $\mathbf{D}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$. Multiplying both sides of eq.(15) from the left by the inverse of \mathbf{V} yields $\mathbf{V}^{-1} \mathbf{T V}=\mathbf{D}$
The matrices \mathbf{T} and \mathbf{D} are said to be "similar", and \mathbf{V} is said to "diagonalise" \mathbf{T} in a "similarity transformation". Note that eq.(14) applies irrespective of whether the eigenvectors have been normalised before the formation of \mathbf{V}. However, in the special case where \mathbf{T} is symmetric (i.e. $b=c$ as in the numerical example given above), it can be shown that \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal. If the vectors are used in normalised form in this case, then \mathbf{V} becomes an orthogonal matrix, in which case $\mathbf{V}^{-1}=\mathbf{V}^{\mathbf{T}}$.
In the example above, for instance, $\mathbf{V}=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$ and $\mathbf{V}^{-1}=\left(\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$. In this case
$\mathbf{V}^{-\mathbf{1}} \mathbf{T V}=\left(\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)\left(\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right)\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)=\left(\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right)=\mathbf{D}$
which checks out nicely.
Note that for a 3×3 system, eq.(8) becomes a cubic equation, for a 4×4 system, it's a quartic and so on. If you are asked to solve a cubic equation in a problem sheet or examination, you can be confident that the roots are small integers, so you only have to spot one of them (λ_{1}), divide out the factor $\left(\lambda-\lambda_{1}\right)$, and solve the remaining quadratic for the other two roots.

