Fact Sheet K - Triple Products

Triple Scalar Product

- The triple scalar product, so called because three vectors are involved and the answer is a scalar quantity, is defined as

$$
(\mathbf{A} \times \mathbf{B}) . \mathbf{C}=\mathbf{C} .(\mathbf{A} \times \mathbf{B}) .
$$

- In component form it reads

$$
\begin{aligned}
(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C} & =C_{x}\left(A_{y} B_{z}-A_{z} B_{y}\right)+C_{y}\left(A_{z} B_{x}-A_{x} B_{z}\right)+C_{z}\left(A_{x} B_{y}-A_{y} B_{x}\right) \\
& =\left|\begin{array}{lll}
C_{x} & A_{x} & B_{x} \\
C_{y} & A_{y} & B_{y} \\
C_{z} & A_{z} & B_{z}
\end{array}\right|=\left|\begin{array}{ccc}
A_{x} & B_{x} & C_{x} \\
A_{y} & B_{y} & C_{y} \\
A_{z} & B_{z} & C_{z}
\end{array}\right|=\left|\begin{array}{ccc}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right| .
\end{aligned}
$$

- The magnitude of the triple scalar product is the volume of a parallelepiped whose sides are the vectors \mathbf{A}, \mathbf{B}, and \mathbf{C}.

Triple Vector Product

- The triple vector product, so called because three vectors are involved and the result is a vector quantity, is defined as
$\mathbf{T}=\mathbf{C} \times(\mathbf{A} \times \mathbf{B})$
- Bearing in mind that $\mathbf{A} \times \mathbf{B}$ is perpendicular to the plane of \mathbf{A} and \mathbf{B}, and that \mathbf{T} is perpendicular to the plane of \mathbf{C} and $\mathbf{A} \times \mathbf{B}$, one can deduce that \mathbf{T} lies in the plane of \mathbf{A} and \mathbf{B}. It is therefore reasonable that
$\mathbf{T}=p \mathbf{A}+q \mathbf{B}$.
It can be shown (but the proofs are messy) that $p=\mathbf{C} . \mathbf{B}$ that $q=-\mathbf{C} . \mathbf{A}$, so the full result is
$\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=(\mathbf{C} . \mathbf{B}) \mathbf{A}-(\mathbf{C} . \mathbf{A}) \mathbf{B}$
or equivalently
$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}=(\mathbf{C} . \mathbf{A}) \mathbf{B}-(\mathbf{C} . \mathbf{B}) \mathbf{A}$

