Fact Sheet J - Matrix Inversion

This fact sheet tells you how to find the inverse of a matrix, and takes you through an example in detail.

- Only non-singular square matrices have inverses, i.e. square matrices \mathbf{A} for which $\operatorname{det} \mathbf{A} \neq 0$.
- When an inverse exists, the formula for the inverse is $\mathbf{A}^{-1}=\frac{\operatorname{adj} \mathbf{A}}{\operatorname{det} \mathbf{A}}$ where $\operatorname{adj} \mathbf{A}$ is the so-called adjoint of A.
- The adjoint of \mathbf{A} is defined by $\operatorname{adj} \mathbf{A}=\mathbf{C}^{\mathrm{T}}$ where \mathbf{C} is the matrix of the cofactors of \mathbf{A}. The adjoint of \mathbf{A} is therefore the transposed matrix of the cofactors.
- The matrix of the cofactors is obtained by replacing every element of \mathbf{A} by its cofactor. The cofactor of element $j k$ of \mathbf{A} is the minor of that element multiplied by $(-1)^{j+k}$; the minor is the determinant of the matrix that remains when row j and column k of \mathbf{A} are ignored.
- The following example is from question 2 of the Problems for Lecture 12:

The task is to find the inverse of the matrix $\mathbf{A}=\left(\begin{array}{ccc}-1 & 2 & 3 \\ 2 & 1 & -4 \\ -1 & -2 & 1\end{array}\right)$. The determinant of \mathbf{A} is
easily shown to be 2 , which confirms that \mathbf{A} has an inverse. The matrix of the minors is $\mathbf{M}=\left(\begin{array}{ccc}-7 & -2 & -3 \\ 8 & 2 & 4 \\ -11 & -2 & -5\end{array}\right)$ and, reversing the signs of the four "odd" elements (those for which $j+k$ is odd) yields $\mathbf{C}=\left(\begin{array}{ccc}-7 & 2 & -3 \\ -8 & 2 & -4 \\ -11 & 2 & -5\end{array}\right)$ for the matrix of the cofactors. Hence the adjoint $\underline{\text { matrix }}$ is adj $\mathbf{A}=\mathbf{C}^{\mathrm{T}}=\left(\begin{array}{ccc}-7 & -8 & -11 \\ 2 & 2 & 2 \\ -3 & -4 & -5\end{array}\right)$ and the inverse matrix is

$$
\mathbf{A}^{-1}=\frac{\operatorname{adj} \mathbf{A}}{\operatorname{det} \mathbf{A}}=\left(\begin{array}{ccc}
-\frac{7}{2} & -4 & -\frac{11}{2} \\
1 & 1 & 1 \\
-\frac{3}{2} & -2 & -\frac{5}{2}
\end{array}\right) .
$$

It is readily verified that

$$
\left(\begin{array}{ccc}
-\frac{7}{2} & -4 & -\frac{11}{2} \\
1 & 1 & 1 \\
-\frac{3}{2} & -2 & -\frac{5}{2}
\end{array}\right)\left(\begin{array}{ccc}
-1 & 2 & 3 \\
2 & 1 & -4 \\
-1 & -2 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 2 & 3 \\
2 & 1 & -4 \\
-1 & -2 & 1
\end{array}\right)\left(\begin{array}{ccc}
-\frac{7}{2} & -4 & -\frac{11}{2} \\
1 & 1 & 1 \\
-\frac{3}{2} & -2 & -\frac{5}{2}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

