Fact Sheet G

Linear Equations \& Cramer's Rule

- Two simultaneous linear equations in two variables of the form

$$
\left.\begin{array}{r}
a_{1} x+b_{1} y=k_{1} \tag{1}\\
a_{2} x+b_{2} y=k_{2}
\end{array}\right\}
$$

have the solution
$x=\frac{k_{1} b_{2}-k_{2} b_{1}}{a_{1} b_{2}-a_{2} b_{1}} \quad y=\frac{a_{1} k_{2}-a_{2} k_{1}}{a_{1} b_{2}-a_{2} b_{1}}$

- Using determinants, these solutions for x and y may be written
$x=\frac{\left|\begin{array}{ll}k_{1} & b_{1} \\ k_{2} & b_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|} \quad y=\frac{\left|\begin{array}{ll}a_{1} & k_{1} \\ a_{2} & k_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|}$
This result is known as Cramer's Rule.
- Note that the solutions for x and y have the same factor in the denominator, namely the determinant of the coefficients of the original equations.
- The definition of a 2×2 determinant is
$\left|\begin{array}{ll}p & q \\ r & s\end{array}\right|=p s-r q$
Detailed information on determinants is given in Fact Sheet H .
- The solution given in eqs.(2) \& (3) exists provided the factor in the denominator (the determinant of the coefficients) is non-zero. Each member of eqs.(1) is the equation of a straight line, and the solution is the point where the lines cross. However, if the lines are parallel, they never cross, and there is no solution; this is the case where the determinant of the coefficients is zero!
- For three simultaneous equations

$$
\left.\begin{array}{rl}
a_{1} x+b_{1} y+c_{1} z & =k_{1} \tag{5}\\
a_{2} x+b_{2} y+c_{2} z & =k_{2} \\
a_{3} x+b_{3} y+c_{3} z & =k_{3}
\end{array}\right\}
$$

the solutions are
$x=\frac{\left|\begin{array}{lll}k_{1} & b_{1} & c_{1} \\ k_{2} & b_{2} & c_{2} \\ k_{3} & b_{3} & c_{3}\end{array}\right|}{\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|} \quad y=\frac{\left|\begin{array}{lll}a_{1} & k_{1} & c_{1} \\ a_{2} & k_{2} & c_{2} \\ a_{3} & k_{3} & c_{3}\end{array}\right|}{\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|} \quad z=\frac{\left|\begin{array}{lll}a_{1} & b_{1} & k_{1} \\ a_{2} & b_{2} & k_{2} \\ a_{3} & b_{3} & k_{3}\end{array}\right|}{\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|}$
This is Cramer's Rule for three equations. See Fact Sheet H for more information on 3×3 determinants.

- In matrix form, the sets of linear equations treated here read as follows
$\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)\binom{x}{y}=\binom{k_{1}}{k_{2}}$
and
$\left(\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}k_{1} \\ k_{2} \\ k_{3}\end{array}\right)$
The 2×2 and 3×3 matrices on the left contain the coefficients of the original equations. The corresponding 2×2 and 3×3 determinants appear in the denominators of the solutions for x, y, and z.

