Fact Sheet E-Vector Multiplication

There are two types of vector \times vector multiplication:

- The scalar product, so called because the results is a scalar quantity (and also called the dot product because a dot is the symbol used) is defined as
$\mathbf{A . B}=|\mathbf{A}||\mathbf{B}| \cos \theta$
where $|\mathbf{A}|$ and $|\mathbf{B}|$ are the magnitudes of the two vectors and θ is the angle between the vectors.

In terms of components,
$\mathbf{A . B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

- The vector product, so called because the result is a vector quantity (and also called the cross product because a cross is the symbol commonly used) is defined as
$\mathbf{A} \times \mathbf{B}=|\mathbf{A}||\mathbf{B}| \sin \theta \hat{\mathbf{n}}$
where $\hat{\mathbf{n}}$ is a unit vector perpendicular to the plane of \mathbf{A} and \mathbf{B}, directed such that \mathbf{A}, \mathbf{B}, and $\hat{\mathbf{n}}$ form a right-handed system.
In terms of components

$$
\mathbf{A} \times \mathbf{B}=\mathbf{i}\left(A_{y} B_{z}-A_{z} B_{y}\right)+\mathbf{j}\left(A_{z} B_{x}-A_{x} B_{z}\right)+\mathbf{k}\left(A_{x} B_{y}-A_{y} B_{x}\right)
$$

In determinant form (see later in the course), the vector product can be written

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

- From the definitions, it is easy to see that, whereas the scalar product is commutative, the vector product is non-commutative i.e.
$\mathbf{A} . \mathbf{B}=\mathbf{B} . \mathbf{A}$ but $\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}$
- Some books use the symbolism $\mathbf{A} \wedge \mathbf{B}$ for the vector product.
- The unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} obey the following fairly obvious scalar product rules:
$\mathbf{i} . \mathbf{i}=\mathbf{j} . \mathbf{j}=\mathbf{k} . \mathbf{k}=1$
but the scalar product of all unlike pairs is zero, i.e.
$\mathbf{i} . \mathbf{j}=\mathbf{j} . \mathbf{k}=\mathbf{k} . \mathbf{i}=0$
- The vector product of any vector with itself is always zero so
$\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=0$.
Provided a right-handed system of axes is in use
$\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$
$\mathbf{j} \times \mathbf{i}=-\mathbf{k} \quad \mathbf{k} \times \mathbf{j}=-\mathbf{i} \quad \mathbf{i} \times \mathbf{k}=-\mathbf{j}$
Note that the sign is positive when the three unit vectors are in cyclic order (ijkijk), and negative otherwise (see Fact Sheet B).
- Note that right-handedness occurs both in the definition of the vector product, and in the definition of a right-handed set of $x y z$ axes. Failure to adhere strictly to these rules will lead to sign errors.

