Fact Sheet B Right-handed axes and cyclic order

• A <u>right-handed Cartesian coordinate system</u> is one in which perpendicular x, y, and z axes are oriented such that rotating the axes from x towards y about the z-axis would cause a right-handed thread to advance in the +z direction.

For the axes shown below, the rotation defined above is counter-clockwise and hence, to form a right-handed system, the *z*-axis must come **<u>OUT OF THE PAPER</u>**.

• Cyclic order for the *xyz* coordinates means any sequence of three taken from *x y z x y z*

Hence xyz, yzx, and zxy are in cyclic order, whereas xzy, yxz and zyx are not.

• The three cyclic order sequences can be obtained from the diagram below

ADDITIONAL MATERIAL (USEFUL FOR LATER)

The extension of these ideas to sequences of numbers comes in useful when evaluating determinants

• Sequences of three numbers may be called *even* when they are in cyclic order, and *odd* when they are not. The three even sequences are therefore

123 231 312

• Sequences of four (or more) numbers can also be classified as <u>even</u> or <u>odd</u>. Even sequences are those that can be converted to the basic sequence 1234 by an even number of exchanges. Odd sequences are defined similarly.

Typical even sequences are:	2143	4132	3241
Typical odd sequences are:	3421	1432	2134