Classwork 8 - ANSWERS

1. The distance of closest approach is $s=|\mathbf{V} . \hat{\mathbf{n}}|$ where \mathbf{V} is any vector between the two paths, and $\hat{\mathbf{n}}$ is the unit normal to both of them, given by the cross product of the two unit direction vectors i.e. $\hat{\mathbf{n}}=\hat{\mathbf{d}}_{1} \times \hat{\mathbf{d}}_{2}$. It follows that $\hat{\mathbf{n}}=\frac{-\mathbf{i}-\mathbf{j}-\mathbf{k}}{\sqrt{3}} \times \frac{4 \mathbf{i}+5 \mathbf{j}+3 \mathbf{k}}{\sqrt{50}}=\frac{2 \mathbf{i}-\mathbf{j}-\mathbf{k}}{\sqrt{150}}$. A convenient choice for \mathbf{V} is $\mathbf{V}=-750(\mathbf{j}+\mathbf{k})$, and from the dot product, one obtains $s=10 \sqrt{150}=122.5$, a comfortable margin if the units are km .
2.

$$
\begin{aligned}
e^{i} & =1+\frac{i}{1!}+\frac{i^{2}}{2!}+\frac{i^{3}}{3!}+\ldots \\
& =1+i-0.5-0.16667 i+0.04167+0.00833 i-0.00139-0.00020 i+\ldots \\
& =(1-0.5+0.04167-0.00139+\ldots)+i(1-0.16667+0.00833-0.00020+\ldots) \\
& =0.54028+0.84146 i
\end{aligned}
$$

The modulus and argument both come out as $1 \ldots$. . but, since $e^{i \theta}=\cos \theta+i \sin \theta$, you have been working out $\cos (1)$ and $\sin (1)$, so the answer should be no surprise at all!
3. (i) The eigenvalues are 4 and -1 , and the respective (un-normalised) eigenvectors are $(1,1)$ and $(3,-2)$.
(ii) The characteristic equation is $\lambda^{3}-5 \lambda^{2}-\lambda+5=(\lambda-5)\left(\lambda^{2}-1\right)=0$, so the eigenvalues are 5,1 , and -1 . The respective eigenvectors are $(1,1,0),(0,0,1)$ and (1, $-1,0$).
(iii) The characteristic equation is $\lambda^{3}-4 \lambda^{2}-\lambda+4=(\lambda-1)(\lambda+1)(\lambda-4)=0$, so the eigenvalues are 4,1 , and -1 . The respective eigenvectors are $(1,1,1),(1,1,-2)$ and ($1,-1,0$).

