Classwork 7 (updated)

Transforming Areas ... and Volumes

1. The matrix $\mathbf{M}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ transforms a point defined by the vector $\mathbf{r}=\left[\begin{array}{l}x \\ y\end{array}\right]$ into a new point defined by $\mathbf{R}=\left[\begin{array}{l}X \\ Y\end{array}\right]$ through the equation $\mathbf{R}=\mathbf{M r}$. Write down equations for X and Y in terms of x, y, and the elements of \mathbf{M}. How is the origin transformed?
2. $A B C D$ is a square of side s as shown with the lower left-hand corner at $\mathbf{r}_{\mathrm{A}}=\binom{u}{v}$.
Write down expressions for (i) the vectors defining all four corners of the square and (ii) the vectors $\overrightarrow{A B}, \overrightarrow{D C}, \overrightarrow{A D}, \overrightarrow{B C}$.

X
3. Convince yourself that \mathbf{M} transforms a straight line into another straight line. It follows that \mathbf{M} transforms $A B C D$ into a quadrilateral $E F G H$. Write down the vectors defining all four corners of $E F G H$, and hence find the vectors $\overrightarrow{E F}, \overrightarrow{H G}, \overrightarrow{E H}, \overrightarrow{F G}$. You should find that $\overrightarrow{E F}=\overrightarrow{H G}$, which implies that opposite sides of the quadrilateral are equal in length and direction, and hence that the quadrilateral is a parallelogram.
4. If $\mathbf{r}_{\mathrm{A}}=\binom{-1}{-1}, s=3$, and $\mathbf{M}=\left(\begin{array}{ll}3 & 2 \\ 2 & 4\end{array}\right)$, find the corners of the parallelogram and the vectors $\overrightarrow{E F}, \overrightarrow{H G}, \overrightarrow{E H}, \overrightarrow{F G}$. Make a rough sketch of $A B C D$ and $E F G H$.
5. The area of a parallelogram is $|\mathbf{A} \times \mathbf{B}|$ where \mathbf{A} and \mathbf{B} are vectors defining two adjacent sides. If the parallelogram lies in the $x-y$ plane, the area is therefore $\left|A_{x} B_{y}-A_{y} B_{x}\right|$. Use this result to find the area of $E F G H$, and show that the area scale factor for the transformation (i.e. the factor by which the area of the original square is increased) is $|a d-b c|$. Put in the numbers from the previous question.
6. Does the same area scale factor apply to other 2 D shapes transformed by \mathbf{M} ?

A further question for now or later ...
7. These ideas can be extended to 3D. A unit cube has edges of unit length parallel to the coordinate axes and one corner is at the origin. The linear transformation $\mathbf{T}=\left(\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right)$ transforms the cube into a parallelepiped.
(a) Write down the vectors representing the three edges of the parallelepiped that intersect at the origin.
(b) By using the formula from Lecture 12 for the volume of a parallelepiped, find the volume scale factor for the transformation applied to the cube.
(c) Does the same volume scale factor apply to other three-dimensional shapes transformed under this transformation?

Update

The original version quoted $s=2$ in question 4 . With this value, the answers are

$$
\begin{gathered}
\mathbf{r}_{E}=\binom{-5}{-6}, \quad \mathbf{r}_{F}=\binom{1}{-2}, \quad \mathbf{r}_{G}=\binom{5}{6}, \quad \mathbf{r}_{H}=\binom{-1}{2} . \\
\overrightarrow{E F}=\binom{6}{4}=\overrightarrow{H G}, \quad \overrightarrow{E H}=\binom{4}{8}=\overrightarrow{F G} .
\end{gathered}
$$

