## Classwork 5 - ANSWERS (corrected)

(a) The magnitude of $\mathbf{u}(|\mathbf{u}|=\sqrt{\mathbf{u} \cdot \mathbf{u}})$ is the root of the sum of the squares of the components, so $u_{x}^{2}+u_{y}^{2}=v_{x}^{2}+v_{y}^{2}=1$ in this case. The two vectors are orthogonal if $\mathbf{u} . \mathbf{v}=0$, so $u_{x} v_{x}+u_{y} v_{y}=0$. In matrix form, the conditions are $\mathbf{v}^{\mathrm{T}} \mathbf{v}=\mathbf{u}^{\mathrm{T}} \mathbf{u}=1$ and $\mathbf{v}^{\mathrm{T}} \mathbf{u}=\mathbf{u}^{\mathrm{T}} \mathbf{v}=0$.
(b) $\hat{\mathbf{a}}=\binom{3 / 5}{-4 / 5}$ and $\hat{\mathbf{b}}=\binom{ \pm 4 / 5}{ \pm 3 / 5}$.
(c) $\quad\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)\left(\begin{array}{ll}u_{x} & v_{x} \\ u_{y} & v_{y}\end{array}\right)=\left(\begin{array}{cc}u_{x}^{2}+u_{y}^{2} & u_{x} v_{x}+u_{y} v_{y} \\ u_{x} v_{x}+u_{y} v_{y} & v_{x}^{2}+v_{y}^{2}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ using the conditions in (a).
(d) $\binom{q_{x}}{q_{y}}=\binom{c p_{x}+d p_{y}}{e p_{x}+f p_{y}}$ so $q_{x}^{2}+q_{y}^{2}=\left(c^{2}+e^{2}\right) p_{x}^{2}+\left(d^{2}+f^{2}\right) p_{y}^{2}+2 p_{x} p_{y}(c d+e f)=p_{x}^{2}+p_{y}^{2}$.

The conditions for this to be true are $c^{2}+e^{2}=d^{2}+f^{2}=1$ and $c d+e f=0$, which are exactly the same as the conditions on the elements of $\mathbf{M}$ in part (c).
(e) $\mathbf{q}^{\mathrm{T}}=\mathbf{p}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}}$.
(f) $\quad \mathbf{q}^{\mathrm{T}} \mathbf{h}=\mathbf{p}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}} \mathbf{N g}$ using the result of part (e), so $\mathbf{q}^{\mathrm{T}} \mathbf{h}=\mathbf{p}^{\mathrm{T}} \mathbf{g}$ if $\mathbf{N}^{\mathrm{T}} \mathbf{N}=\mathbf{U}$.
(g) Yes.
(h) $\quad \mathbf{L}_{1}=\left(\begin{array}{cc}3 / 5 & 4 / 5 \\ -4 / 5 & 3 / 5\end{array}\right)$ and $\mathbf{L}_{2}=\left(\begin{array}{cc}3 / 5 & -4 / 5 \\ -4 / 5 & -3 / 5\end{array}\right)$. The first represents a clockwise rotation of 53.13 ${ }^{\circ}$, whereas $\mathbf{L}_{2}=\mathbf{L}_{1}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, which represents a reflection in the $x$ - $\operatorname{axis}(y \rightarrow-y)$ followed by a $53.13^{\circ}$ clockwise rotation.
(i) $\quad \mathbf{t}_{1}=\left(\begin{array}{cc}3 / 5 & 4 / 5 \\ -4 / 5 & 3 / 5\end{array}\right)\binom{-5}{7}=\binom{13 / 5}{41 / 5} ; \mathbf{t}_{2}=\left(\begin{array}{cc}3 / 5 & -4 / 5 \\ -4 / 5 & -3 / 5\end{array}\right)\binom{-5}{7}=\binom{-43 / 5}{-1 / 5}$.

The magnitude of all three vectors is $\sqrt{74}$.
It follows that s. $t_{1}=\frac{-65+287}{5 \times 74}=0.6$ which corresponds to an angle of $53.13^{\circ}$, and s.t $\mathbf{t}_{2}=\frac{215-7}{5 \times 74}=0.5622$ which corresponds to an angle of $55.79^{\circ}$.

Relative to the negative $x$-axis, the vector $\mathbf{s}$ lies at $54.46^{\circ}$ clockwise, the vector $\mathbf{t}_{1}$ lies at $107.59^{\circ}$ clockwise, and the vector $\mathbf{t}_{2}$ lies at $1.33^{\circ}$ anti-clockwise. The latter can be obtained by reflection of $\mathbf{s}$ in the $x$-axis to produce $\binom{-5}{-7}$ (54.46 ${ }^{\circ}$ anti-clockwise), followed by a $53.13^{\circ}$ clockwise rotation.

