ANSWERS to Classwork 4 (corrected)

(a) If \mathbf{P} is parallel to $\mathbf{A} \times \mathbf{B}$, it must be perpendicular to the plane defined by \mathbf{A} and \mathbf{B}.
(b) $\quad V_{P}$ represents the volume of a parallelepiped*, in the special case where the two faces in the plane of \mathbf{A} and \mathbf{B} are parallelograms, and the other four (perpendicular to the plane of \mathbf{A} and \mathbf{B}) are rectangles. (Thus, if one of the parallelograms is the horizontal base of the "box", the four rectangular faces are vertical (of height $|\mathbf{P}|$), and the other parallelogram forms the lid.)

* The most general definition of a parallelepiped is: a solid with six faces, each a parallelogram, and each parallel to the opposite face.
(c) This is the general case in which V is the volume of a parallelepiped whose sides are defined by the three vectors \mathbf{A}, \mathbf{B}, and \mathbf{C}.
(d) If \mathbf{D} is defined as $\mathbf{D}=\mathbf{A} \times \mathbf{B}$, then $V=|\mathbf{C} \cdot \mathbf{D}|=\left|C_{x} D_{x}+C_{y} D_{y}+C_{z} D_{z}\right|$. Substituting $D_{x}=A_{y} B_{z}-A_{z} B_{y}$ etc. yields the desired result.
(e) From the result of part (d), it should be clear that $V=\left|\begin{array}{lll}C_{x} & C_{y} & C_{z} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|=\left|\begin{array}{ccc}A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z}\end{array}\right|$, where the slightly more symmetrical second step follows by two row exchanges.
(f) $\quad V=2(2 t-s)-(-4)(-t+s)+2(-1+2)=2 s+2=4$ for $s=1$.
(g) $V=0$ when $s=-1$, irrespective of t.
(h) Substituting \mathbf{A}, \mathbf{B} and \mathbf{C} into $\mathbf{C}=\alpha \mathbf{A}+\beta \mathbf{B}$ shows that the identity also requires $s=-1$. In this case, $\alpha=-(1+2 t)$ and $\beta=-(1+t)$.
(i) The condition $s=-1$ ensures that \mathbf{A}, \mathbf{B}, and \mathbf{C} are coplanar. Any vector can be written as a superposition of two non-identical vectors in the same plane.

