Classwork 4

Discover the "scalar triple product"

In this classwork, you will discover for yourself, in a few gentle steps, the so-called "scalar triple product" of three vectors, and you will explore its significance. The topic will be covered in a later lecture, but there's no harm in finding out about it a bit ahead of time! Refer to the hints at the end if you have difficulty.

Note: In this Classwork, the symbol $\|$ refers to the magnitude of a vector, and has nothing to do with determinants. The magnitudes are there simply to ensure that the answers are positive.

At the start of Lecture 5, we saw that $|\mathbf{A} \times \mathbf{B}|$ represents the area of a parallelogram whose sides are \mathbf{A} and \mathbf{B}.
(a) (trivial) Consider a third vector \mathbf{P}, which is parallel to $\mathbf{A} \times \mathbf{B}$. What can you say about the direction of \mathbf{P} relative to the plane defined by \mathbf{A} and \mathbf{B} ?
(b) What geometrical property does the scalar quantity $V_{P}=|\mathbf{P} \| \mathbf{A} \times \mathbf{B}|$ represent?
(c) For a general vector \mathbf{C}, what geometrical property does the scalar quantity $V=|\mathbf{C} .(\mathbf{A} \times \mathbf{B})|$ represent?
(d) Show that $V=\left|C_{x} A_{y} B_{z}-C_{x} A_{z} B_{y}+C_{y} A_{z} B_{x}-C_{y} A_{x} B_{z}+C_{z} A_{x} B_{y}-C_{z} A_{y} B_{x}\right|$
(e) Express V as a determinant.
(f) If $\mathbf{A}=2 \mathbf{i}-\mathbf{j}-\mathbf{k}, \mathbf{B}=-4 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$, and $\mathbf{C}=2 \mathbf{i}+s \mathbf{j}+t \mathbf{k}$, find V when $s=1$ and $t=2$.
(g) For what values of s and t is $V=0$?
(h) For what values of s and t can \mathbf{C} be written in the form $\mathbf{C}=\alpha \mathbf{A}+\beta \mathbf{B}$? For these values of s and t, find expressions for α and β.
(i) What is the geometrical significance of the conditions on s and t in (g) and (h)?

Hints

Part (b): The fact that the symbol used is V should give you a clue. Refer to part (a) for the significance of $\mathbf{A} \times \mathbf{B}$. Note that V_{P} is the product of two scalar quantities.
Part (c): This is a generalisation of the idea in part (b).
Part (d): Write out the three vectors in component form. Remember that the bars in the expression for V are there merely to ensure that V is a positive quantity, and have nothing to do with determinants.

