Classwork 3

Systematic Elimination

This classwork is about solving simultaneous linear equations using a systematic technique for eliminating the unknowns.

First consider the set of equations
(1) $2 x-y+3 z=9$
(2) $x-y+4 z=10$
(3) $3 x+y+2 z=6$

1. Use Cramer's rule (reproduced from Fact Sheet F at the end) to find x. You'll find it's a real chore!
2. Now follow these steps to solve the problem.
(a) Exchange eqs. (1) and (2)
(b) Subtract $3 \times$ the new eq.(1) from eq.(3) to eliminate x from this equation.
(b) Similarly subtract $2 \times$ eq.(1) from eq.(2) to eliminate x from this equation too.
(d) Subtract $4 \times$ the modified eq.(2) from eq.(3) to eliminate y from the equation.
(e) Obtain z from the final version of eq.(3), y from the final version of eq.(2), and x from the final version of eq.(1).
(f) Substitute the values of x, y and z back into the original equations to verify that it all checks out.
3. Now try to solve this set without the clues:

$$
\begin{gathered}
x+2 y+z=7 \\
-2 x+3 y-z=-5 \\
3 x+12 y-6 z=9
\end{gathered}
$$

Once again, devise a strategy to eliminate x from the second equation and both x and y from the third. There's a hint at the end
4. If you're still on board, have a shot at this 4×4 system:

$$
\begin{aligned}
& w+2 x+y+3 z=18 \\
& 2 w+4 x+6 y+z=-3 \\
& w+3 x \quad+5 z=24 \\
& 3 w+5 x+2 y+4 z=40
\end{aligned}
$$

5. There's an obvious problem with this set of equations. Can you see what it is?

$$
\begin{aligned}
& 2 x-y+3 z=9 \\
& x-y+4 z=10 \\
& 6 x-3 y+9 z=27
\end{aligned}
$$

6. And what about this set?

$$
\begin{gathered}
x+3 y-z=6 \\
8 x+9 y+4 z=21 \\
2 x+y+2 z=3
\end{gathered}
$$

Cramer's Rule

For the 3×3 system

$$
\begin{aligned}
a_{1} x+b_{1} y+c_{1} z & =k_{1} \\
a_{2} x+b_{2} y+c_{2} z & =k_{2} \\
a_{3} x+b_{3} y+c_{3} z & =k_{3}
\end{aligned}
$$

the solution for x is $x=\frac{\left|\begin{array}{lll}k_{1} & b_{1} & c_{1} \\ k_{2} & b_{2} & c_{2} \\ k_{3} & b_{3} & c_{3}\end{array}\right|}{\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|}=\frac{k_{1} b_{2} c_{3}-k_{1} b_{3} c_{2}-k_{2} b_{1} c_{3}+k_{2} b_{3} c_{1}+k_{3} b_{1} c_{2}-k_{3} b_{2} c_{1}}{a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}}$

Hint for question 3

Start by subtracting the first equation from the third, after removing the common factor of 3 from the latter.

Rules of the game

None of the following operations changes the solution of a set of linear equations:
(i) Changing the order of the equations.
(ii) Multiplying all terms in an equation by the same constant.
(iii) Adding a multiple of any equation to any other equation. The multiple can be negative (so addition includes subtraction), and it need not be an integer multiple (so a fraction is OK).
The strategy is to leave only z in the last equation, only y and z in the next last, and so on.

