Classwork 1 - Square Root of a Complex Number

If a complex is raised to a power (even a complex power), it produces another complex number. In this classwork, we explore square roots of complex numbers; imaginary powers turn up in a later classwork. The roots of complex numbers will be covered more systematically later in the course.

1. Consider $w=z^{2}$ where $z=x+i y$ is a general complex number. Write down, in terms of x and y):
(i) w
(ii) $\operatorname{Re}\{w\}$
(iii) $\operatorname{Im}\{w\}$
(iv) $|z|$
(v) $|w|$

What is the relationship between $|w|$ and $|z|$?
In the following questions, consider the case where $w=z^{2}=2(1+i \sqrt{3})$.
2. Find $|w|$ and $|z|$.
3. (i) obtain equations for x and y, the real and imaginary parts of z.
(ii) by eliminating y from these equations, show that

$$
x^{4}-2 x^{2}-3=0
$$

(iii) How many roots does this equation have (i.e. how many values of x satisfy it)?
(iv) Are all the roots appropriate in this case? If not, state how many are appropriate and find the corresponding values of y.
(v) Each (x, y) pair defines a complex number z. Check that the modulus of each z has the value predicted in question 2 , and that the correct value of w is recovered if the square is taken.
(vi) Plot w and its roots on an Argand diagram.
(vii) Harder ... Express w and z in complex exponential form, finding the arguments of each (in radians).
(viii) Repeat parts (i)-(vii) in the case where $w=z^{2}=2(-1+i \sqrt{3})$.

Spend a little time looking at any roots you discarded in part (iv) and see if you can find anything interesting about them!

