Vectors
Scalars vs. Vectors In Physics
Scalars:
A quantity fully determined by a single real number and an associated unit, e.g. temperature, mass, density, time…

Vector:
A quantity determined by a magnitude (>0) and a direction, e.g. force, velocity, momentum.

Our aim is to introduce the general concept of vector space. In particular we will

focus on vectors in Rn
Definitions

We denote by Rn the set off al n-duples (x1 , x2 , x3 … xn) where 
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. We denote the n-duple (x1 , x2 , x3 … xn) by x, x, 
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For any two elements 
x = (x1, x2, x3, … xn)
And


y = (y1, y2, y3, … yn)
We can the define the sum as

x + y
= (x1+y1, x2+y2, x3+y3, … xn+yn)
For any x = (x1, x2, x3, … xn) in Rn and 
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 we define the scalar multiplication as

nx = (nx1, nx2, nx3, … nxn)
e.g. x=(1,-2,0,7)   y=(-2,0,1,6)     n=3

x + y = (-1,-2,1,13)
nx = (-3,-6,0,21)

By convention, we denote (-1)x = –x and x + (-1)y = x –y 

Also, we denote by 0 the element in Rn whose entries are all zero i.e. 0=(0,0,0,0 … 0)
The following laws hold true for any x, y, z 
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1. 
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2. 
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 (x + y)

3. x + y 

= y + x              
4. 
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)x    
5. x + (y + z)
= (x + y) + z
6. x + 0

= x
7. x + (-1)x
= 0
1 and 2 are distributive laws

3 is the commutative law

4 and 5 are the associative laws

6 is the neutral element law

7 is the inverse element law

Vector Space

Any set with operations of addition and multiplication with a scalar, such that laws 1 to 7 above are fulfilled is called vector space and its elements are called vectors.

From now in we will restrict ourselves to vectors in Rn
[image: image45.wmf]a

The vectors

e1 = (1, 0, 0, …, 0, 0)

e2 = (0, 1, 0, …, 0, 0)
.

.

.

en = (0, 0, 0, …, 0, 1)
The set of vectors {e1, e2, …, en} is called the Natural Basis of Rn. The entries xi are called the coordinates of the vector x with respect to the natural basis.
Using sigma notation, addition is
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The magnitude of a vector x = (x1, x2, … xn) 
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A vector with unit magnitude 
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 is called a unit vector. Note that 
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, that is, the vectors that form the natural basis are unit vectors.
The unit vector in the direction of x is:
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If we are in R3 we usually call

e1 = i = (1,0,0)

e2 = j = (0,1,0)

e3 = k = (0,0,1)


e.g. x = (3,-1,2) = 3i –j +2k

Geometric Representation Of Vectors

Let A and B be two points in Rn
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      A

We define an arrow 
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 as the line starting at A and terminating at B.

Two arrows 
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 and 
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are equivalent if the translation A to C is the same as B to D e.g.
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The set of all equivalent arrows is a vector if from 
A=(A1,A2, … An) and 








B=(B1,B2, … Bn)
We get
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Cartesian Coordinate System

A coordinate system for which the coordinates of a point are its distances from a set of perpendicular lines (axis) that intersects at the origin of the system.

                 z


                                                 y

x

Let us consider the plane R2 and draw two perpendicular axes.

                                           x

Right Hand Rule
Place your hand on the plane with your thumb point up and consider the smallest angle between the positive x direction of the x and y-axis. If the fingers point from the x-axis to the y-axis then it is a right-handed coordinate system, if not it is left-handed.

                 y

                            x                                               x

                                                                 y

Right-handed



Left-handed.

Now consider R3


                                y

x

Using the right-hand rule let your index finger point along the positive x-axis, your middle finger along the positive y-axis. If your thumb is point along the positive z-axis, it is a right-handed system. Otherwise it is a left-handed coordinate system.
                 z

                                     y                                                        y

x                                                            x  


                                                               z

Right-handed 





Left-handed

By convention we use right-handed coordinate systems.

Dot Product (Scalar Product) Of Two Vectors

Let a and b be 2 vectors and 
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 be the smallest angle between them in the plane defined by a and b. Then we define

a . b  =  
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We can interrupt the dot product geometrically as:

                b
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Theorem:
Let 
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, then a . b = 0 If a is perpendicular to b
Proof:

If a . b = 0 
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a is perpendicular to b
Hence a . a = 
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The dot product has the following properties:

1. a . b = b . a
2. a . (b + c) – a . b + a . c
3. na . b = n(a . b) = a . (nb)
For the natural basis vectors in R3
i . i = j . j = k . k = 1

i . j = i . k = j . k = 0

and 

a . b = (axi + ayj + azk) . (bxi + byj + bzk) = axbx +ayby + azbz
Often the dot product is defined for x 
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Yet another definition is defining the angle 
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 between x and y as:
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Cross Product (Vector Product) Of 2 Vectors

The vector product of two products is a vector itself with magnitude:
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And a x b is perpendicular to the plane define by a and b, so that set a, b , a x b is a right-handed set.

    a x b
                            b


                               a
We can interpret the cross product geometrically as the area of the parallelogram with sides 
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The vector product has the following properties:
1. a x b = - b x a
2. a x (b + c) = a x b + a x c
For the natural basis vectors in R3 we have:

i x i = j x j = k x k =0
i x j = k
j x k = i
k x i = j
and

a x b 
= (axi + ayj + azk) x (bxi + byj + bzk)  


= 
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= (aybz - azby)i + (azbz – bzaz)j + (axby - aybx)k
Also

(a x b) . a = 0

(a x b) . b = 0
a . b = � EMBED Equation.3  ��� x Projection of b onto a











a . b = � EMBED Equation.3  ��� x Projection of a onto b








Having specified the positive direction of the x and y-axis (normally in the horizontal plane) we have 2 choices for the positive direction of the z-axis.











Normally we choose the x-axis as the horizontal line. Given the x-axis we have 2 possible choices of the direction of the y-axis.





Have the properties that any vector x = (x1, x2, x3 … xn)


can be written as:





x = x1e1 + x2e2 + … xnen


� EMBED Equation.3  ���





Area = � EMBED Equation.3  ���





Note that a x a = 0
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