Imperial College London

BSc and MSci EXAMINATIONS (MATHEMATICS)
January 2007

MC1MF (Test)

Analytical Methods \& Analysis

- Affix ONE label to each answer book that you use. DO NOT use the label with your name on it.
- Write your answers in a single answer book, using continuation books if necessary.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- The question in Section A will be worth $1 \frac{1}{2}$ times as many marks as either question in Section B.
- Calculators may not be used.

SECTION A

1. (i) Let $r_{1}=\sqrt{8}-\sqrt{2}, r_{2}=\sqrt{6}, r_{3}=0.10200100020000 \ldots$.

Which of these real numbers are irrational?
(a) none of them, (b) r_{1} and r_{3} only, (c) r_{2} and r_{3} only, (d)all of them.
(ii) Let $x=27^{27}, y=81^{19}$ and $z=9^{99}$. Which of the following is true?
(a) $x<y<z$
(b) $x=z$ and $y<z$
(c) $x<z<y$
(d) $y<x<z$.
(iii) For which integer values of n is $(\sqrt{3}-i)^{n}$ real?
(a) $n=0$ only, (b) all integers, (c) multiples of 12 only, (d) multiples of 6 only.
(iv) Which of the following cubics has roots $1+i, 1-i$ and 1 ?
(a) $4 x^{3}-2 x^{2}+2 x-1=0$
(b) $x^{3}-3 x^{2}+4 x-2=0$
(c) $x^{3}-2 x^{2}+2 x-1=0$
(d) $x^{3}+2 x^{2}-2 x+4=0$.
(v) What is the maximal domain of the real, (single-valued) function

$$
f(x)=\sin ^{-1}\left(e^{x}-1\right) ?
$$

Find the inverse function $f^{-1}(x)$ and express the even part of $f^{-1}(x)$ in as simple a form as possible.
(vi) Sketch the curve

$$
y^{2}=\frac{4-x^{2}}{1-x^{2}}
$$

You should identify any stationary points, but need not locate any points of inflection.
(vii) Using any method, evaluate the limits

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow 2}\left(\frac{\sin ^{2} \pi x}{x^{3}-5 x^{2}+8 x-4}\right) \\
& \text { (b) } \lim _{x \rightarrow \infty}\left(\frac{\sin x}{x}+\left(\frac{x+3}{x-1}\right)^{x}\right)
\end{aligned}
$$

(viii) Evaluate the definite integrals
(a) $\quad \int_{0}^{1} \frac{\log \left(\tan ^{-1} x\right)}{1+x^{2}} d x$
(b) $\quad \int_{0}^{1} \frac{x+2}{x^{2}+2 x+2} d x$

SECTION B

2. Show that if $y=\sinh ^{-1} x$ then

$$
y^{\prime}=\frac{1}{\sqrt{1+x^{2}}} \quad \text { and } \quad\left(1+x^{2}\right) y^{\prime \prime}+x y^{\prime}=0
$$

Differentiating this equation n times, show that for $n \geqslant 0$

$$
y^{(n+2)}(0)=-n^{2} y^{(n)}(0)
$$

and deduce that the Maclaurin series for y gives

$$
\sinh ^{-1}(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{(1)^{2}(3)^{2}(5)^{2} \ldots(2 k-1)^{2}}{(2 k+1)!} x^{2 k+1} .
$$

What is the radius of convergence of this series?
3. (a) Prove that $\sqrt{3}$ is irrational.
(b) Show that $\cos (2 \pi / 9)$ is a root of the cubic equation $8 x^{3}-6 x+1=0$. Find the other two roots and deduce that

$$
\cos (2 \pi / 9)+\cos (4 \pi / 9)+\cos (8 \pi / 9)=0
$$

(c) Prove that between any two distinct irrational numbers there is a rational number.
(d) Express the decimal $1 . \overline{813}$ as a rational m / n.

