Imperial College London

BSc and MSci EXAMINATIONS (MATHEMATICS)

January 2007

MC1MF (Test)

Analytical Methods & Analysis

- Affix ONE label to each answer book that you use. DO NOT use the label with your name on it.
- Write your answers in a single answer book, using continuation books if necessary.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- The question in Section A will be worth $1\frac{1}{2}$ times as many marks as either question in Section B.
- Calculators may not be used.

SECTION A

1. (i) Let $r_1 = \sqrt{8} - \sqrt{2}$, $r_2 = \sqrt{6}$, $r_3 = 0.10200100020000...$

Which of these real numbers are irrational?

- (a) none of them , (b) r_1 and r_3 only, (c) r_2 and r_3 only , (d)all of them.
- (ii) Let $x=27^{27}$, $y=81^{19}$ and $z=9^{99}$. Which of the following is true?
 - (a) x < y < z
 - (b) x = z and y < z
 - (c) x < z < y
 - (d) y < x < z.
- (iii) For which integer values of n is $(\sqrt{3} i)^n$ real?
 - (a) n = 0 only, (b) all integers, (c) multiples of 12 only, (d) multiples of 6 only.
- (iv) Which of the following cubics has roots 1+i, 1-i and 1?
 - (a) $4x^3 2x^2 + 2x 1 = 0$
 - (b) $x^3 3x^2 + 4x 2 = 0$
 - (c) $x^3 2x^2 + 2x 1 = 0$
 - (d) $x^3 + 2x^2 2x + 4 = 0$
- (v) What is the maximal domain of the real, (single-valued) function

$$f(x) = \sin^{-1}(e^x - 1)?$$

Find the inverse function $f^{-1}(x)$ and express the even part of $f^{-1}(x)$ in as simple a form as possible.

(vi) Sketch the curve

$$y^2 = \frac{4 - x^2}{1 - x^2}.$$

You should identify any stationary points, but need not locate any points of inflection.

(vii) Using any method, evaluate the limits

(a)
$$\lim_{x \to 2} \left(\frac{\sin^2 \pi x}{x^3 - 5x^2 + 8x - 4} \right)$$

(b)
$$\lim_{x \to \infty} \left(\frac{\sin x}{x} + \left(\frac{x+3}{x-1} \right)^x \right)$$

(viii) Evaluate the definite integrals

(a)
$$\int_0^1 \frac{\log(\tan^{-1} x)}{1+x^2} dx$$
 (b)
$$\int_0^1 \frac{x+2}{x^2+2x+2} dx$$

SECTION B

2. Show that if $y = \sinh^{-1} x$ then

$$y' = \frac{1}{\sqrt{1+x^2}}$$
 and $(1+x^2)y'' + xy' = 0$

Differentiating this equation n times, show that for $n \geqslant 0$

$$y^{(n+2)}(0) = -n^2 y^{(n)}(0)$$

and deduce that the Maclaurin series for y gives

$$\sinh^{-1}(x) = \sum_{k=0}^{\infty} (-1)^k \frac{(1)^2 (3)^2 (5)^2 \dots (2k-1)^2}{(2k+1)!} x^{2k+1}.$$

What is the radius of convergence of this series?

- 3. (a) Prove that $\sqrt{3}$ is irrational.
 - (b) Show that $\cos(2\pi/9)$ is a root of the cubic equation $8x^3 6x + 1 = 0$. Find the other two roots and deduce that

$$\cos(2\pi/9) + \cos(4\pi/9) + \cos(8\pi/9) = 0.$$

- (c) Prove that between any two distinct irrational numbers there is a rational number.
- (d) Express the decimal $1.\overline{813}$ as a rational m/n.