1. (a) Define what it means for a real number to be rational and for a real number to be irrational.
(b) Prove that if a is irrational and b is a non-zero rational then $a b$ is irrational.
(c) Prove that between any 2 distinct rational numbers there is an irrational number.
(d) For each of the following 3 statements either prove that it is true or prove that it is false.
(i) $\sqrt{2}+\sqrt{11}<5$.
(ii) $\sqrt{60}+\sqrt{5 / 2}$ is irrational.
(iii) Let x be the real number whose decimal expansion is

$$
x=0 . a_{1} a_{2} a_{3} \ldots
$$

where $a_{n}=7$ if n is divisible by 7 and $a_{n}=0$ otherwise. Then x is irrational.
(e) Find a quadratic equation whose roots are $7+2 \sqrt{10}$ and $7-2 \sqrt{10}$. Hence, or otherwise, find a quartic equation with integer coefficients satisfied by $\sqrt{5}+\sqrt{2}$ and $\sqrt{5}-\sqrt{2}$.
2. (a) Use De Moivre's theorem to prove

$$
\cos \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}
$$

and to prove the analogous formula for $\sin \left(\theta_{1}+\theta_{2}\right)$.
(b) Use part (a) to find a formula for $\tan \left(\theta_{1}+\theta_{2}\right)$ in terms of $\tan \theta_{1}$ and $\tan \theta_{2}$.
(c) Using the previous part, or otherwise, find an expression for $\tan (\pi / 8)$, and use this to prove that $\tan (\pi / 8)$ is irrational.
(d) Show that if p is a polynomial with real coefficients and α is a root of p, then so is $\bar{\alpha}$. Use this fact to prove that every real polynomial factorizes as a product of real linear and real quadratic polynomials. (You may use the fact that every complex polynomial of degree n factorizes as a product of linear factors and has exactly n roots, counting repeated roots).
(e) Find all solutions to the equation

$$
|z-a|=|z-b|
$$

where a and b are distinct complex numbers. Give a geometric interpretation of these solutions. (Hint: you might want to check that the midpoint of the line segment joining a and b is a solution of this equation.)
3. (a) State precisely what it means for a function $f(x)$ to be differentiable at $x=a$. If $f(x)$ and $g(x)$ are differentiable at $x=a$, prove from first principles that $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$.
(b) Evaluate the limit:

$$
\lim _{x \rightarrow 0} \frac{\log (1+\sin x)-x}{\exp \left(x^{2}\right)-\cos x}
$$

(c) Find an even function $f(x)$ and an odd function $g(x)$ such that

$$
f(x)+g(x)=2^{x} .
$$

Show that $f^{\prime}(1)=(\log 2) g(1)$ and hence or otherwise show that

$$
\lim _{x \rightarrow 1}\left(\frac{g(x-1)}{f(x)-f(1)}\right)=\frac{4}{3}
$$

4. (a) Find a formula for the $n^{t h}$ derivative of the function $f(z)=\log \left(z+\frac{1}{2}\right)$, for $n \geqslant 1$. Hence derive a series expansion of $f(z)$ about $z=0$, including the general term. State the ratio test carefully, and derive the radius of convergence of this series.
(b) If $f(z)$ is as above and x is a real number, show that

$$
\Re e\left[f\left(\frac{1}{2} e^{2 i x}\right)\right]=\log |\cos x|
$$

where $\Re e$ denotes the real part, and find the corresponding imaginary part.
(c) Assuming the series expansion of part (a) is valid when $z=\frac{1}{2} e^{2 i x}$, obtain the relation

$$
x=\sin 2 x-\frac{1}{2} \sin 4 x+\frac{1}{3} \sin 6 x+\ldots(-1)^{(n-1)} \frac{\sin 2 n x}{n}+\ldots
$$

Comment on the behaviour of this expression when $x=0, \frac{1}{4} \pi, \frac{1}{2} \pi$ and $\frac{3}{4} \pi$.
5. (a) The shape of a long icicle hanging from the ceiling is given by the function $R(z)$, where R is the radius of the circular cross-section at height z above the ground. It can be shown that in terms of an angle ψ, that

$$
\frac{d R}{d z}=\tan \psi \quad \text { and } \quad z=\frac{1}{\sin ^{4} \psi}
$$

Given that $R=0$ at $z=1$, show that

$$
R=\frac{4}{3}(\sqrt{z}-1)^{1 / 2}(2+\sqrt{z})
$$

(b) Find $y(x)$ satisfying

$$
\frac{d y}{d x}+e^{x} y=e^{x} \quad \text { with } \quad y(0)=0
$$

(c) Find $y(x)$ satisfying

$$
\frac{d y}{d x}=\frac{y}{x}+\tan \left(\frac{y}{x}\right) .
$$

