UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
 May-June 2006

This paper is also taken for the relevant examination for the Associateship.

MC1MF

Analytical Methods and Analysis

Date: Wednesday, 10th May 2006 Time: 2 pm - 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. (a) The function $f(x)$ is defined as

$$
f(x)=\cosh \left(x+x^{2}\right) .
$$

(i) Write $f(x)$ as the sum of an even function and an odd function.
(ii) Find the first three non-zero terms in the series expansion of $f(x)$ about $x=0$.
(iii) Find the derivative of $f(x)$ from first principles.
(b) Sketch the curve defined by the relation

$$
y^{2}=x^{3}\left(1-x^{3}\right),
$$

carefully indicating any important features on your sketch.
2. Define

$$
f(x)=\tanh ^{-1}(x) .
$$

(a) Find an expression for $f(x)$ in terms of the logarithm function.
(b) Hence, or otherwise, show that the n-th derivative of $f(x)$, for $n \geq 1$, is given by

$$
\frac{d^{n} f}{d x^{n}}=\frac{(n-1)!}{2}\left(\frac{(-1)^{n-1}}{(1+x)^{n}}+\frac{1}{(1-x)^{n}}\right) .
$$

(c) Find the complete Taylor series of $f(x)$ about $x=0$.
(d) Let the function $F(x)$ be defined by

$$
F(x)=\int_{0}^{x} f(x) d x
$$

By using integration by parts to find $F(x)$ explicitly, show that

$$
F(1 / 2)=\log \left(\frac{3^{3 / 4}}{2}\right)
$$

3. (a) Find the general solution of the equation

$$
\frac{d^{2} T}{d r^{2}}-\frac{2}{r} \frac{d T}{d r}=r^{2}
$$

(b) Find the general solution of the equation

$$
\left(\frac{x+y}{x-y}\right) \frac{d y}{d x}=1
$$

(c) Find the general solution of the equation

$$
\frac{d y}{d x}=\sec x \sec y
$$

4. (a) Define what it means for a real number to be irrational.
(b) Prove that $\sqrt{2}$ is irrational.
(c) Deduce that if a, b, c, d are integers such that $a+b \sqrt{2}=c+d \sqrt{2}$, then $a=c$ and $b=d$.
(d) If α and β are rational, and γ and δ are real, then does $\alpha+\beta \sqrt{2}=\gamma+\delta \sqrt{2}$ imply $\alpha=\gamma$ and $\beta=\delta$. (Proof or counterexample required.)
(e) For each $n \in \mathbb{N}$, the integers a_{n} and b_{n} are defined by the formula $(1+\sqrt{2})^{n}=a_{n}+b_{n} \sqrt{2}$. Prove by induction that a_{n} is odd for all n, and that b_{n} is even if and only if n is even.
5. (a) Define the modulus $|z|$ of a complex number z.
(b) Draw a clear sketch of each of the following sets of complex numbers $A=\{z:|z|=|z+2 i|\}$ and $B=\{z:|z+i|=\sqrt{3}\}$.
(c) Prove that if $\omega \in A \cap B$ then $\omega^{6}=-64$.
(d) By taking real parts in Moivre's Theorem, find a formula for $\cos 4 \theta$ in terms of $\cos \theta$.
(e) Use your formula from (d) to find a quartic (i.e. degree 4) equation with real coefficients that has $\cos (\pi / 12)$ as a root.
