1. Define the group $\mathrm{Aff}(\mathbb{R}^2)$ of affine transformations of \mathbb{R}^2 . Show that there are group homomorphisms

$$\alpha: \mathbb{R}^2 \to \mathrm{Aff}(\mathbb{R}^2)$$
, $\beta: \mathrm{Aff}(\mathbb{R}^2) \to GL(2,\mathbb{R})$

such that α is injective and β is surjective.

Define the real projective space \mathbb{RP}^2 and the group $PGL(3,\mathbb{R})$ of projective transformations of \mathbb{RP}^2 . Give the definition of a *projective line* in \mathbb{RP}^2 . Show that if L is a projective line and g is an element of $PGL(3,\mathbb{R})$ then g(L) is also a projective line. Show that, for any line L, the subgroup $\{g \in PGL(3,\mathbb{R}) : g(L) = L\}$ is isomorphic to $Aff(\mathbb{R}^2)$.

Suppose that $\Gamma \subset \operatorname{Aff}(\mathbf{R}^2)$ is a *finite* subgroup, of order d. By considering the action of Γ on the point $d^{-1}\left(\sum_{\gamma\in\Gamma}\gamma(0)\right)$, show that Γ is contained in a subgroup G of $\operatorname{Aff}(\mathbf{R}^2)$ such that the restriction of β gives an isomorphism from G to $GL(2,\mathbf{R})$.

2. Let U be an open subset of \mathbb{R}^2 and E, F, G be smooth functions on U with $E > 0, G > 0, EG - F^2 > 0$. Explain how the Riemannian metric

$$g = Edx^2 + 2Fdxdy + Gdy^2$$

defines the length $L_g(\gamma)$ of a path γ in U and the distance $d_g(p,q)$ between two points p,q in U.

Now make the standard identification of \mathbb{R}^2 with \mathbb{C} and let H be the upper half-plane $H = \{x + iy : y > 0\}$. Let g be the Riemannian metric

$$g = \frac{1}{y^2} \left(dx^2 + dy^2 \right)$$

on H. Show that if λ, μ are real numbers with $\lambda > \mu > 0$ then

$$d_g(\lambda i, \mu i) = \log \lambda - \log \mu.$$

Let a, b, c, d be real numbers with ad - bc > 0 and let f be the Mobius map

$$f(z) = \frac{az+b}{cz+d}.$$

Show that $d_g(z,w)=d_g(f(z),f(w))$, for any two points $z,w\in H$.

By considering a suitable Mobius map, show that for any real numbers $heta,\mu$ with $\mu>0$

$$d_g\left(i, \frac{\sin\theta + i\mu\cos\theta}{\cos\theta - i\mu\sin\theta}\right) = |\log\mu|.$$

- 3. Give the definitions of a *smooth manifold* and a *Lie group*. Show that the real projective plane \mathbb{RP}^2 is a smooth manifold. Let $Q \subset \mathbb{RP}^2$ be a non-empty, non-singular conic. Show that $\mathbb{RP}^2 \setminus Q$ is the disjoint union of connected components Ω, Ω^* , where Ω is homeomorphic to a disc and there is a surjective, two-to-one map $\pi: S^1 \times \mathbb{R} \to \Omega^*$. Find a Lie group which acts on \mathbb{RP}^2 with three distinct orbits Q, Ω, Ω^* .
- 4. Let $M_n(\mathbf{R})$ denote the set of $n \times n$ matrices with real entries. Define the exponential $\exp(A)$ of a matrix $A \in M_n(\mathbf{R})$. [You may assume that $||AB|| \le ||A|| \, ||B||$, where $||A||^2 = \sum_{ij} A_{ij}^2$.] Show that

$$\frac{d}{dt}\exp(tA) = A\exp(tA)$$

and deduce that

$$\det(\exp(A)) = e^{\operatorname{Tr}(A)}.$$

Now suppose that $G \subset GL(n, \mathbf{R})$ is a subgroup and also a submanifold, with tangent space $TG_1 \subset M_n(\mathbf{R})$ at the identity. Show that for $A, B \in TG_1$ the bracket AB - BA is also in TG_1 . [You may assume without proof that for any $A \in TG_1$ the exponential $\exp(A)$ lies in G.]

5. Give the definition of a connection (or covariant derivative) ∇ on the tangent bundle of a smooth manifold M. Define what it means for ∇ to be torsion-free, and for ∇ to be compatible with a Riemannian metric on M.

Let H be a Lie group. Explain how an element of H acts by left-translation on tangent vectors to H. Let $\langle \ , \ \rangle$ be a Euclidean inner product on TH_1 and let g be the left-invariant Riemannian metric on H, equal to $\langle \ , \ \rangle$ on TH_1 . Explain why there is a bilinear map

$$B: TH_1 \times TH_1 \rightarrow TH_1$$

characterized by the condition that

$$\langle B(x,y), z \rangle = \langle [z,x], y \rangle + \langle x, [z,y] \rangle$$

for all $x, y, z \in TH_1$. Show that B is zero if the metric g is also invariant under right translation. If ∇ is the torsion-free connection on TH which is compatible with g, show that

$$2\nabla_X Y = [X, Y] + B(X, Y),$$

for left-invariant vector fields X, Y.