UNIVERSITY OF LONDON

Course: M4P43/MSP13

Setter: Panov Checker: Haskin Editor: MEK External: JEC

Date: May 3, 2007

BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2007

M4P43/MSP13

Algebraic Topology

Setter's signature	Checker's signature	Editor's signature

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2007

This paper is also taken for the relevant examination for the Associateship.

M4P43/MSP13

Algebraic Topology

Date: Friday, 26th May 2007 Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. (i) Let X be a topological space and A be a subspace, $A \subset X$. Give the definition for A to be
 - (a) A retract of X.
 - (b) A deformation retract of X.
 - (ii) Give an example of X and a connected subset $A \subset X$ such that
 - (a) A is not a retract of X.
 - (b) A is a retract of X but A is not a deformation retract of X. Give brief justifications.
- 2. (i) (a) Let X and Y be two path-connected topological spaces. Express the fundamental group of the space $X \times Y$ in terms of the fundamental groups of X and Y.
 - (b) Explain with the help of an appropriate picture why the fundamental group of the complement of two points in \mathbb{R}^2 is $\mathbb{Z} * \mathbb{Z}$, where * denotes the free product.
 - (ii) Consider in \mathbb{R}^3 two vertical lines L_1 , L_2 and a horizontal circle S^1 given by $L_1=\{(0,0,t)|t\in\mathbb{R}\}$, $L_2=\{(0,1,t)|t\in\mathbb{R}\}$, and $S^1=\{(\cos t,\sin t,0)|t\in[0,2\pi]\}$ respectively. Find the fundamental groups of the following complements in \mathbb{R}^3 .
 - (a) $\mathbb{R}^3 \setminus \{L_1 \cup L_2\}$.
 - (b) $\mathbb{R}^3 \setminus \{L_1 \cup S^1\}.$
- 3. (a) Let X be a path-connected topological space and let D^2 be a disk with the boundary S^1 . For a continuous map $\phi: S^1 \to X$ let Y be the space obtained from X by attaching to it D^2 along the map ϕ . Let x be a point in S^1 . State the relation between the fundamental groups $\pi_1(X,\phi(x))$ and $\pi_1(Y,\phi(x))$. (No proof is needed here).
 - (b) Show how to give the Klein bottle the structure of a cell complex.
 - (c) Using part (a) or otherwise give a presentation of the fundamental group of the Klein bottle by generators and relations .

- 4. (i) Let X be a path-connected space and let $p:\widetilde{X}\to X$ be a covering map. Let x be a marked point on X.
 - (a) Show that any loop $\gamma:[0,1]\to X$ based at x gives an action on $p^{-1}(x)$. Explain without proof how this action gives rise to the action of $\pi_1(X,x)$ on the set $p^{-1}(x)$.
 - (b) Prove that the space \widetilde{X} is path-connected iff the action of $\pi_1(X,x)$ on $p^{-1}(x)$ is transitive.
 - (ii) Find the number of non-isomorphic connected degree 3 covers of the 2-torus T^2 . Explain your reasoning.

- 5. (i) Consider the *n*-simplex Δ^n , $\Delta^n = [v_0, ..., v_n]$.
 - (a) Give the formula for the boundary $\partial_n(\Delta^n)$.
 - (b) Prove that $\partial_{n-1}\partial_n(\Delta^n)=0$.
 - (ii) Let X be the Δ -complex obtained from two 2-simplexes $[v_0,v_1,v_2]$ and $[u_0,u_1,u_2]$ by making the following identifications of edges:

$$[v_0, v_1] \simeq [u_0, u_1],$$

$$[v_0, v_2] \simeq [v_1, v_2] \simeq [u_0, u_2] \simeq [u_1, u_2]$$

Compute the simplicial homology groups of X.