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Let

Y=8S'vS'={2,€8" x5 |zr=10r 5z =1}
with basepoint y = (1,1) € Y. (We consider S as the set of complex numbers z with
|2| = 1).

Let
X ={(a1,a2) €R? | a; € Z or ay € Z}

with basepoint = = (0,0).
Let f: X — Y be the map defined by

flar, ) = (e ¢t

(a) What does it mean for a map g : V — W of topological spaces to be a covering
map?
Prove that f : X — Y is a covering map.

(b) Calculate the corresponding action of 7;(Y,y) on f~!(y). (You may assume that
m1(Y,y) is the free group on two generators).

(c) Leta,be m(Y,y) denote the generators of m; (Y, y) corresponding to the two circles
in Y. Show that the subgroup f,(m(X,z)) C m(Y,y) is the set

{am1bn1 N LT | my, N € Z, me«: 20; an = U}

(a) State Van Kampen's theorem.

(b) Compute the fundamental group of X, the compact oriented surface of genus g.

(You may assume any properties you like about the fundamental group of S! and of
the wedge product S* V...V S? of n circles, as long as they are stated correctly).
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3. (a) What is the n simplex A,,?
Let X be a topological space. Define the group C,(X) of singular n chains on X
and the boundary map d : C,,(X) — Cp,—1(X).
Let f: X — Y be a map of spaces. Define the induced map f, : Cp,(X) — C,(Y).
How do the maps f. and the boundary maps d on C,(X) and C,(Y) interact?

(b) Let X,Y be topological spaces, and let f, g : X — Y be homotopic maps.

Construct the maps S : C,(X) — C,41(Y) which give a chain homotopy between
[+ and g,. Briefly sketch the proof that S satisfies the defining equation of a chain

homotopy,
dS+Sd=f, —g.

4. (a) What is the Mayer-Vietoris sequence? (You need not define the maps in the sequence).

Use the Mayer-Vietoris sequence to calculate the homology groups of S*.

(b) Let X be a topological space. Use the Mayer-Vietoris sequence to show that the
homology groups of X x S! are

Hi(X x §') = Hy(X) @ H;_1(X)

for all 7 € Z.

(You may assume any basic properties of homology).

5. (a) Define the group C¢®(X) of cellular chains of a cell complex X, and the differential
d: GEI(X) ~ O (X)

(b) Define the complex projective space CP".

Give CIP" the structure of a cell complex and hence compute its homology groups.
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