Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) MSc EXAMINATIONS (MATHEMATICS)

May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M4P42/MSP12 Analysis on Manifolds and Heat Kernels

Date: Thursday, 1st June 2006

Time: 10 am – 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Let Ω be a bounded open set in \mathbb{R}^n . Consider the following differential operator in Ω

$$\mathcal{L} = \Delta + \sum_{j=1}^{n} b_j(x) \frac{\partial}{\partial x^j},$$

where $b_j(x)$ are bounded functions in Ω and $\Delta = \sum_{j=1}^n \frac{\partial^2}{(\partial x^j)^2}$ is the Laplace operator.

(a) Prove that if $u \in C^2(\Omega) \cap C(\overline{\Omega})$ and $\mathcal{L}u > 0$ in Ω then

$$\sup_{\Omega} u = \sup_{\partial \Omega} u. \tag{1}$$

- (b) Show that there exists a function $v \in C^2(\mathbb{R}^n)$ such that $\mathcal{L}v > 0$ in Ω .
- (c) Prove that (1) holds also for any function $u \in C^2(\Omega) \cap C(\overline{\Omega})$ such that $\mathcal{L}u \ge 0$ in Ω .
- (d) Prove that, for any function f on Ω and any function g on $\partial\Omega$, there is at most one function $u \in C^2(\Omega) \cap C(\overline{\Omega})$ solving the boundary value problem

$$\left\{ \begin{array}{ll} \mathcal{L}u=f & \text{in } \Omega, \\ u=g & \text{on } \partial\Omega. \end{array} \right.$$

2. Let \mathbb{S}^n be the unit sphere in \mathbb{R}^{n+1} and $p = (0, 0, \dots, -1)$ be the south pole of the sphere. The stereographic projection is the mapping P from $\mathbb{S}^n \setminus \{p\}$ to the subspace

$$\mathbb{R}^{n} = \left\{ x \in \mathbb{R}^{n+1} : x^{n+1} = 0 \right\},\$$

which is defined as follows: if $x \in \mathbb{S}^n \setminus \{p\}$ then Px is the point of the intersection of \mathbb{R}^n with the straight line through p and x.

- (a) Prove that $Px = \frac{x'}{x^{n+1}+1}$ for any $x = (x^1, \ldots, x^{n+1}) \in \mathbb{S}^n \setminus \{p\}$, where $x' = (x^1, \ldots, x^n)$. Show that P is a bijection of $\mathbb{S}^n \setminus \{p\}$ onto \mathbb{R}^n .
- (b) Consider the Cartesian coordinates y^1, \ldots, y^n in \mathbb{R}^n as local coordinates on $\mathbb{S}^n \setminus \{p\}$ using the pullback by the stereographic projection. Prove that the canonical spherical metric $\mathbf{g}_{\mathbb{S}^n}$ has in these coordinates the form

$$\mathbf{g}_{\mathbb{S}^n} = \frac{4}{\left(1 + \left|y\right|^2\right)^2} \mathbf{g}_{\mathbb{R}^n},$$

where $|y|^2 = \sum (y^i)^2$ and $\mathbf{g}_{\mathbb{R}^n} = (dy^1)^2 + \ldots + (dy^n)^2$ is the canonical Euclidean metric in \mathbb{R}^n .

(c) Prove that the Laplace operator $\Delta_{\mathbb{S}^2}$ on \mathbb{S}^2 has in the coordinates y^1, y^2 the form

$$\Delta_{\mathbb{S}^2} = \frac{\left(1+\left|y\right|^2\right)^2}{4} \left(\frac{\partial^2}{\left(\partial y^1\right)^2} + \frac{\partial^2}{\left(\partial y^2\right)^2}\right).$$

M4P42/MSP12 Analysis on Manifolds and Heat Kernels (2006)

- 3. Let M be a Riemannian manifold and μ be the Riemannian measure.
 - (a) Give the definition of the function spaces W^1, W_0^1, W_0^2 on M.
 - (b) Give the definition of the Dirichlet Laplace operator H on M as an operator in $L^2(M, \mu)$.
 - (c) Give a detailed proof of the fact that, for any $\alpha > 0$, the resolvent $R_{\alpha} := (H + \alpha id)^{-1}$ exists and is a bounded non-negative definite self-adjoint operator in $L^2(M, \mu)$. Show also that $||R_{\alpha}|| \le \alpha^{-1}$.
- 4. Let M be a Riemannian manifold and H be the Dirichlet Laplace operator in $L^2 = L^2(M, \mu)$, where μ is the Riemannian measure on M. Let $\Phi(\lambda)$ be a continuous real-valued function on $[0, +\infty)$ of subexponential growth; the latter means that, for any $\varepsilon > 0$,

$$\sup_{\lambda \in [0,\infty)} \left| \Phi\left(\lambda\right) e^{-\varepsilon \lambda} \right| < \infty.$$
⁽²⁾

(a) Prove that, for any t > 0, the operator

$$Q_t = \Phi\left(H\right) e^{-tH}$$

is a bounded self-adjoint operator in L^2 . State clearly all the results used.

(b) A path $v(t) : (0, +\infty) \to L^2$ is said to satisfy the heat equation if, for any t > 0, $v(t) \in \operatorname{dom} H$, the Fréchet derivative $\frac{dv}{dt}$ exists, and

$$\frac{dv}{dt} = -Hv. \tag{3}$$

Prove that, for any $f \in L^2$, the path $v(t) = Q_t f$ satisfies the heat equation.

- (c) Set $u(t) = \frac{dv}{dt}$ where v(t) is as above. Prove that u(t) also satisfies the heat equation.
- 5. Let M be a Riemannian manifold, H be the Dirichlet Laplace operator in $L^2 = L^2(M, \mu)$ (where μ is the Riemannian measure), and $P_t = e^{-tH}$ ($t \ge 0$) be the heat semigroup.
 - (a) State without proof the main properties of the heat semigroup.
 - (b) Let ψ be a C^{∞} -function on \mathbb{R} such that $\psi(0) = \psi'(0) = 0$ and $0 \le \psi''(s) \le 1$ for all s. Let f be an arbitrary function from L^2 . Set $u_t = P_t f$ and prove that the following function

$$F(t) := \int_{M} \psi\left(u_{t}\right) d\mu \tag{4}$$

is continuous in $t \in [0, +\infty)$. State clearly any result used.

(c) Prove that the function F(t) is differentiable for all t > 0 and that

$$F'(t) = \int_{M} \psi'(u_t) \frac{du_t}{dt} d\mu.$$
(5)

Hence, show that $F'(t) \leq 0$.

(d) Choosing a suitable function ψ in (4) and using the fact that the function F(t) is decreasing, prove that $f \leq 1$ implies $u_t \leq 1$, for any t > 0.