Imperial College

London

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
MSc EXAMINATIONS (MATHEMATICS)
May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M4P42/MSP12 Analysis on Manifolds and Heat Kernels

Date: Thursday, 1st June 2006 Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Let Ω be a bounded open set in \mathbb{R}^{n}. Consider the following differential operator in Ω

$$
\mathcal{L}=\Delta+\sum_{j=1}^{n} b_{j}(x) \frac{\partial}{\partial x^{j}},
$$

where $b_{j}(x)$ are bounded functions in Ω and $\Delta=\sum_{j=1}^{n} \frac{\partial^{2}}{\left(\partial x^{j}\right)^{2}}$ is the Laplace operator.
(a) Prove that if $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and $\mathcal{L} u>0$ in Ω then

$$
\begin{equation*}
\sup _{\Omega} u=\sup _{\partial \Omega} u \tag{1}
\end{equation*}
$$

(b) Show that there exists a function $v \in C^{2}\left(\mathbb{R}^{n}\right)$ such that $\mathcal{L} v>0$ in Ω.
(c) Prove that (1) holds also for any function $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ such that $\mathcal{L} u \geq 0$ in Ω.
(d) Prove that, for any function f on Ω and any function g on $\partial \Omega$, there is at most one function $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ solving the boundary value problem

$$
\begin{cases}\mathcal{L} u=f & \text { in } \Omega, \\ u=g & \text { on } \partial \Omega .\end{cases}
$$

2. Let \mathbb{S}^{n} be the unit sphere in \mathbb{R}^{n+1} and $p=(0,0, \ldots,-1)$ be the south pole of the sphere. The stereographic projection is the mapping P from $\mathbb{S}^{n} \backslash\{p\}$ to the subspace

$$
\mathbb{R}^{n}=\left\{x \in \mathbb{R}^{n+1}: x^{n+1}=0\right\},
$$

which is defined as follows: if $x \in \mathbb{S}^{n} \backslash\{p\}$ then $P x$ is the point of the intersection of \mathbb{R}^{n} with the straight line through p and x.
(a) Prove that $P x=\frac{x^{\prime}}{x^{n+1}+1}$ for any $x=\left(x^{1}, \ldots, x^{n+1}\right) \in \mathbb{S}^{n} \backslash\{p\}$, where $x^{\prime}=$ $\left(x^{1}, \ldots, x^{n}\right)$. Show that P is a bijection of $\mathbb{S}^{n} \backslash\{p\}$ onto \mathbb{R}^{n}.
(b) Consider the Cartesian coordinates y^{1}, \ldots, y^{n} in \mathbb{R}^{n} as local coordinates on $\mathbb{S}^{n} \backslash\{p\}$ using the pullback by the stereographic projection. Prove that the canonical spherical metric $\mathbf{g}_{\mathbb{S}^{n}}$ has in these coordinates the form

$$
\mathbf{g}_{\mathbb{S}^{n}}=\frac{4}{\left(1+|y|^{2}\right)^{2}} \mathbf{g}_{\mathbb{R}^{n}}
$$

where $|y|^{2}=\sum\left(y^{i}\right)^{2}$ and $\mathbf{g}_{\mathbb{R}^{n}}=\left(d y^{1}\right)^{2}+\ldots+\left(d y^{n}\right)^{2}$ is the canonical Euclidean metric in \mathbb{R}^{n}.
(c) Prove that the Laplace operator $\Delta_{\mathbb{S}^{2}}$ on \mathbb{S}^{2} has in the coordinates y^{1}, y^{2} the form

$$
\Delta_{\mathbb{S}^{2}}=\frac{\left(1+|y|^{2}\right)^{2}}{4}\left(\frac{\partial^{2}}{\left(\partial y^{1}\right)^{2}}+\frac{\partial^{2}}{\left(\partial y^{2}\right)^{2}}\right)
$$

3. Let M be a Riemannian manifold and μ be the Riemannian measure.
(a) Give the definition of the function spaces $W^{1}, W_{0}^{1}, W_{0}^{2}$ on M.
(b) Give the definition of the Dirichlet Laplace operator H on M as an operator in $L^{2}(M, \mu)$.
(c) Give a detailed proof of the fact that, for any $\alpha>0$, the resolvent $R_{\alpha}:=(H+\alpha \mathrm{id})^{-1}$ exists and is a bounded non-negative definite self-adjoint operator in $L^{2}(M, \mu)$. Show also that $\left\|R_{\alpha}\right\| \leq \alpha^{-1}$.
4. Let M be a Riemannian manifold and H be the Dirichlet Laplace operator in $L^{2}=L^{2}(M, \mu)$, where μ is the Riemannian measure on M. Let $\Phi(\lambda)$ be a continuous real-valued function on $[0,+\infty)$ of subexponential growth; the latter means that, for any $\varepsilon>0$,

$$
\begin{equation*}
\sup _{\lambda \in[0, \infty)}\left|\Phi(\lambda) e^{-\varepsilon \lambda}\right|<\infty . \tag{2}
\end{equation*}
$$

(a) Prove that, for any $t>0$, the operator

$$
Q_{t}=\Phi(H) e^{-t H}
$$

is a bounded self-adjoint operator in L^{2}. State clearly all the results used.
(b) A path $v(t):(0,+\infty) \rightarrow L^{2}$ is said to satisfy the heat equation if, for any $t>0$, $v(t) \in \operatorname{dom} H$, the Fréchet derivative $\frac{d v}{d t}$ exists, and

$$
\begin{equation*}
\frac{d v}{d t}=-H v \tag{3}
\end{equation*}
$$

Prove that, for any $f \in L^{2}$, the path $v(t)=Q_{t} f$ satisfies the heat equation.
(c) Set $u(t)=\frac{d v}{d t}$ where $v(t)$ is as above. Prove that $u(t)$ also satisfies the heat equation.
5. Let M be a Riemannian manifold, H be the Dirichlet Laplace operator in $L^{2}=L^{2}(M, \mu)$ (where μ is the Riemannian measure), and $P_{t}=e^{-t H}(t \geq 0)$ be the heat semigroup.
(a) State without proof the main properties of the heat semigroup.
(b) Let ψ be a C^{∞}-function on \mathbb{R} such that $\psi(0)=\psi^{\prime}(0)=0$ and $0 \leq \psi^{\prime \prime}(s) \leq 1$ for all s. Let f be an arbitrary function from L^{2}. Set $u_{t}=P_{t} f$ and prove that the following function

$$
\begin{equation*}
F(t):=\int_{M} \psi\left(u_{t}\right) d \mu \tag{4}
\end{equation*}
$$

is continuous in $t \in[0,+\infty)$. State clearly any result used.
(c) Prove that the function $F(t)$ is differentiable for all $t>0$ and that

$$
\begin{equation*}
F^{\prime}(t)=\int_{M} \psi^{\prime}\left(u_{t}\right) \frac{d u_{t}}{d t} d \mu \tag{5}
\end{equation*}
$$

Hence, show that $F^{\prime}(t) \leq 0$.
(d) Choosing a suitable function ψ in (4) and using the fact that the function $F(t)$ is decreasing, prove that $f \leq 1$ implies $u_{t} \leq 1$, for any $t>0$.

