UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2005

This paper is also taken for the relevant examination for the Associateship.

M4P42/MSP12 ANALYSIS ON MANIFOLDS AND HEAT KERNELS

Time:

Date:

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- **1.** Let *M* be an *n*-dimensional C^{∞} manifold.
 - (i) State the definition of tangent bundle TM and give it the structure of a C^{∞} vector bundle over M with fibre dimension n.
 - (ii) State the definition of Riemannian metric g on M.
 - (iii) Let M be equipped with a Riemannian metric g. Give coordinate independent definitions of the differential operators grad: $C^{\infty}(M; \mathbb{R}) \to C^{\infty}(M; TM)$ and div: $C^{\infty}(M, TM) \to C^{\infty}(M; \mathbb{R})$. Find their expressions in local coordinates (x^1, \ldots, x^n) .

<u>Hint</u>: Utilise the fact that the Riemannian metric g induces a bundle isomorphism $TM \xrightarrow{\cong} T^*M$. Besides you can assume M be oriented if needed.

- **2.** Let (M, g) be a C^{∞} closed oriented Riemannian manifold.
 - (i) State a definition of the Sobolev spaces $H^s(M; \Lambda^p T^*M)$ for $s \ge 0$ in terms of the eigenvalues λ_j and eigenforms η_j for j = 1, 2, ... of the Laplacian $-\Delta_p$ acting on differential p-forms.
 - (ii) Recall that the heat kernel $h_p(t, m, m')$ associated with the Laplacian $-\Delta_p$ acting on differential *p*-forms is defined by the property that $\omega = \omega(t, m)$ for $0 < t < \infty$, $m \in M$ given by

$$\omega(t,m) = \int_M h_p(t,m,m') \wedge *\omega_0(m'),$$

solves the heat equation

$$\frac{\partial \omega}{\partial t} - \Delta_p \omega = 0 \text{ in } (0,\infty) \times M$$

with initial condition $\omega(0, \cdot) = \omega_0 \in L^2(M; \Lambda^p T^*M)$. Here, $*: \Lambda^p T^*_m M \to \Lambda^{n-p} T^*_m M$ for $m \in M$ is the Hodge-* operator; $n = \dim M$.

Provide an *informal* justification of the following formula for the heat kernel in terms of the eigenvalues λ_j and eigenforms η_j of $-\Delta_p$:

$$h_p(t,m,m') = \sum_{j=1}^{\infty} e^{-\lambda_j t} \eta_j(m) \otimes \eta_j(m').$$

<u>Hint:</u> 'Informal' means that questions about convergence of the infinite series (whatever the topology) need not be addressed.

- **3.** Let M be a C^{∞} closed manifold and let E, F be vector bundles over M.
 - (i) State the definition of differential operator $P \in \text{Diff}^{\mu}(M; E, F)$ acting in sections of the vector bundles E, F.
 - (ii) State the definition of principal symbol $\sigma^{\mu}(P)$ of $P \in \text{Diff}^{\mu}(M; E, F)$ and indicate to which space (of sections of a certain vector bundle) $\sigma^{\mu}(P)$ does belong.
 - (iii) Let $P \in \text{Diff}^{\mu}(M; E, F)$ and

 $D(P) = \left\{ u \in L^2(M; E); Pu \in L^2(M; F) \text{ in the weak sense} \right\}$

be the maximal domain of P in $L^2(M; E)$. Verify that the operator $P: D(P) \subseteq L^2(M; E) \to L^2(M; F)$ is closed.

- **4.** Let (M, g) be a C^{∞} closed Riemannian manifold.
 - (i) State the definition of de Rham complex on *M*. What does it mean to say that the de Rham complex is a complex?
 - (ii) Let $\omega \in \Omega^* M = \bigoplus_{p=0}^n \Omega^p M$, where $n = \dim M$. Show that the following three conditions are equivalent:
 - (a) ω is a harmonic form, i.e., $\omega \in \ker \Delta$.
 - (b) $\omega \in \ker(d+\delta)$.
 - (c) ω is a closed form and $\delta \omega = 0$.
 - (iii) Show that the index of the de Rham-Hodge operator

$$d + \delta \colon \Omega^{\operatorname{even}} M \to \Omega^{\operatorname{odd}} M$$

equals the Euler characteristic $\chi(M) = \sum_{p=0}^{n} (-1)^{p} \dim H^{p}_{dR}(M)$. Recall that

$$\operatorname{ind}(d+\delta) = \dim \ker(d+\delta) - \dim \ker(d+\delta)^*,$$

while $\Omega^{\text{even}}M = \bigoplus_{p \text{ is even}} \Omega^p M$ and $\Omega^{\text{odd}}M = \bigoplus_{p \text{ is odd}} \Omega^p M$.

<u>Hint</u>: Make use of the Hodge theorem that relates $\dim H^p_{dR}(M)$ to the space of harmonic *p*-forms.

- 5. Let (M,g) be a C^{∞} closed Riemannian manifold and let E, F be vector bundles over M; both equipped with bundle metrics. Let $P \in \text{Diff}^1(M; E, F)$ be an elliptic differential operator.
 - (i) Show that the differential operator P^*P with domain $H^2(M; E)$ is selfadjoint in $L^2(M; E)$.
 - (ii) For $\lambda \in \mathbb{R}$, let $\mathcal{E}_{\lambda} = \{ u \in C^{\infty}(M; E); P^*Pu = \lambda u \}$ and $\mathcal{F}_{\lambda} = \{ u \in C^{\infty}(M; F); PP^*u = \lambda u \}$. Prove that:
 - (a) $\mathcal{E}_0 = \ker P$ and $\mathcal{F}_0 = \ker P^*$.
 - (b) For $\lambda \neq 0$, $P: \mathcal{E}_{\lambda} \to \mathcal{F}_{\lambda}$ is an isomorphism.
 - (iii) Provide short arguments for the following facts:
 - (a) Each space \mathcal{E}_{λ} , $\lambda \in \mathbb{R}$, is finite-dimensional.
 - (b) $\mathcal{E}_{\lambda} = \{0\}$ for all, but a discrete set of $\lambda \in \mathbb{R}$.