- 1. For $\lambda \in \mathbb{R}$, $\lambda \neq 0$, define the mapping $m_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$ by $m_{\lambda}(x) = \lambda x$.
 - (i) Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$. Prove that $\widehat{\varphi \circ m_{\lambda}}(\xi) = \lambda^{-n} (\widehat{\varphi} \circ m_{\lambda^{-1}})(\xi)$ for all $\xi \in \mathbb{R}^n$.
 - (ii) Let $u \in \mathcal{S}'(\mathbb{R}^n)$. Define distribution $u \circ m_{\lambda}$ by

$$(u \circ m_{\lambda})(\varphi) = \lambda^{-n} u(\varphi \circ m_{\lambda^{-1}}),$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$. Prove that this definition is consistent with $\mathcal{S}(\mathbb{R}^n)$, i.e. show that if $u \in \mathcal{S}(\mathbb{R}^n)$, $(u \circ m_\lambda)(x) = u(\lambda x)$, and we identify u with its canonical distribution, then we have $(u \circ m_\lambda)(\varphi) = \lambda^{-n} u(\varphi \circ m_{\lambda^{-1}})$ for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

- (iii) Let $u \in \mathcal{S}'(\mathbb{R}^n)$. Prove that $\widehat{u \circ m_{\lambda}} = \lambda^{-n} \widehat{u} \circ m_{\lambda^{-1}}$.
- 2. Let $f,g \in L^1(\mathbb{R}^n)$. Give the definition of the convolution f * g.
 - (i) Prove that $f * g \in L^1(\mathbb{R}^n)$. If we view f * g as a tempered distribution, show that

$$(f*g)(\varphi) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(z)g(y)\varphi(z+y)dydz$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

(ii) Let $f, g, h \in L^1(\mathbb{R}^n)$. Prove that $(f * g) * h \in L^1(\mathbb{R}^n)$ and that

$$((f*g)*h)(\varphi) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x)g(y)h(z)\varphi(x+y+z)dxdydz$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

- (iii) Let $u \in \mathcal{S}'(\mathbb{R}^n)$ and $\varphi \in \mathcal{S}(\mathbb{R}^n)$. Give the definition of the convolution $u * \varphi$. Prove that $u * \varphi \in C^{\infty}(\mathbb{R}^n)$.
- 3. Give the definition of the symbol classes S^m and $S^{-\infty}$. Give the definition of the pseudo-differential operator T_a with symbol $a \in S^m$.

Let K(x,y) be the integral kernel of T_a , i.e. assume that $(T_af)(x)=\int_{\mathbb{R}^n}K(x,y)f(y)dy$.

(i) Prove that if $a \in S^{-\infty}$, then the kernel K of T_a satisfies

$$(1+|x-y|)^N|\partial_x^\alpha \partial_y^\beta K(x,y)| \le C_{\alpha\beta N},\tag{1}$$

for some constants $C_{\alpha\beta N}$, and for all $x,y\in\mathbb{R}^n$, all multi-indices α,β , and all $N\geq 0$.

(ii) Conversely, assume that the kernel K of a pseudo-differential operator T_a satisfies estimate (1) for all $x,y\in\mathbb{R}^n$, all multi-indices α,β , and all $N\geq 0$. Prove that then $a\in S^{-\infty}$.

- 4. Let $T_a \in \Psi^m$ be a pseudo-differential operator of order m.
 - (i) Give the definition of the L^2 -adjoint T_a^* of $T_a: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$. Consequently, for $u \in \mathcal{S}'(\mathbb{R}^n)$, give the definition of $T_a u$ using the L^2 -adjoint T_a^* .

31 B 35 - 3

- (ii) Check that the definition of $T_a u$ in (i) is consistent with the standard definition if $u \in \mathcal{S}(\mathbb{R}^n)$, i.e. show that $\int_{\mathbb{R}^n} T_a u(x) \varphi(x) dx = \int_{\mathbb{R}^n} u(x) \overline{T_a^* \overline{\varphi}(x)} dx$ for all $u, \varphi \in \mathcal{S}(\mathbb{R}^n)$.
- (iii) For $u \in \mathcal{S}'(\mathbb{R}^n)$, define the transpose T_a^t of T_a by the formula

$$T_a^t u := \overline{T_a^* \overline{u}}.$$

Here $\overline{u} \in \mathcal{S}'(\mathbb{R}^n)$ is the complex conjugate of u, defined by $\overline{u}(\varphi) = \overline{u(\overline{\varphi})}$, for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$, and $\overline{u(\overline{\varphi})}$ is the complex conjugate of $u(\overline{\varphi}) \in \mathbb{C}$.

Prove that

$$(T_a^*\overline{u})(\psi) = \overline{u(T_a\overline{\psi})},$$

for all $\psi \in \mathcal{S}(\mathbb{R}^n)$. Then also prove that

$$(T_a^t u)(\varphi) = u(T_a \varphi)$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

(iv) Prove that T_a^t defined in (iii) is a pseudo-differential operator, with symbol having an asymptotic expansion

symbol of
$$T_a^t \sim \sum_{\alpha} \frac{(2\pi i)^{-|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} \partial_x^{\alpha} \left[a(x, -\xi) \right].$$

[Here you may use the theorem on compound symbols without proof]

- 5. For a function $\psi \in C_0^{\infty}(\mathbb{R}^n)$, give the definition of its support $\sup \psi$.
 - (i) For $\psi \in C_0^{\infty}(\mathbb{R}^n)$, let us define operator $M: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ by setting $(Mf)(x) = \psi(x)f(x)$, for all $x \in \mathbb{R}^n$. Regarding M as a pseudo-differential operator, calculate its order and symbol.
 - (ii) Let $\varphi, \psi \in C_0^\infty(\mathbb{R}^n)$ be such that $\operatorname{supp} \varphi \cap \operatorname{supp} \psi = \emptyset$. Let T_a be a differential operator of order m (i.e. assume that its symbol $a = a(x, \xi)$ is a polynomial in ξ or order m). Prove that $(\varphi T_a(\psi f))(x) = 0$ for all $f \in C^\infty(\mathbb{R}^n)$ and all $x \in \mathbb{R}^n$.
 - (iii) Let $a \in S^m$ be now a general symbol of order m. Let φ, ψ be as in (ii). Prove that operator R defined by $(Rf)(x) = (\varphi T_a(\psi f))(x)$ is a pseudo-differential operator of order

24 33 5

[Here you may use the composition formula for pseudo-differential operators without proof]