Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) and MSc EXAMINATIONS (MATHEMATICS) May-June 2005

This paper is also taken for the relevant examination for the Associateship.

M4P38/MSP8 Geometric and Combinatorial Group Theory

Date: 25 May 2005

Time: 10 am – 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. (a) Define what it means to say that "F = F(S) is a free group, freely generated by the set S".
 - (b) Let S be a set. Assuming that there exists a free group freely generated by S, prove that it is *unique* up to canonical isomorphism.
 - (c) Define the *rank* of a finitely generated free group, and prove that it is well-defined.
 - (d) Prove that $H = \langle a, b, c \mid [a, b] = c, [a, c] = [b, c] = 1 \rangle$ does not contain a non-abelian free group. [Hint: growth]
- 2. (a) Define what it means to say that $\langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle$ is an abstract presentation of the group Γ .
 - (b) State (but do not prove) Tietze's Theorem.
 - (c) Sketch the proof that every finitely presented group is the fundamental group of a compact 2-dimensional complex.
 - (d) Describe and sketch a 2-dimensional space whose fundamental group is $\langle a, b, c, d \mid aba^{-1}b^{-1}, c \rangle$.
- 3. (a) Define what it means to say that a map between topological spaces $p: \hat{X} \to X$ is a covering map.
 - (b) Let X be a connected, locally-connected topological space with basepoint x_0 and let $H \subset \pi_1(X, x_0)$ be a subgroup. Explain briefly how to obtain a covering space $\widehat{X} \to X$ with $\pi_1(\widehat{X}) \cong H$.
 - (c) Describe (without proof) the fundamental group of a compact graph.
 - (d) Define the Euler characteristic $\chi(Y)$ of a compact graph Y and explain why if $p: \widehat{Y} \to Y$ is a d-sheeted covering, $\chi(\widehat{Y}) = d \cdot \chi(Y)$.
 - (e) Noting that graphs of the same Euler characteristic have isomorphic fundamental groups, prove that if F is a free group of rank r and $H \subset F$ is a subgroup of index k, then H is free of rank k(r-1) + 1.
 - (f) Draw a 2-sheeted covering space of the graph with 1 vertex and 3 edges.

- 4. (a) Define HNN extension and amalgamated free products.
 - (b) Prove that the rationals \mathbb{Q} , with the operation of addition, is *not* a finitely generated group but is a subgroup of a finitely generated group.
 - Let $B = \langle a, t \mid ta^2 t^{-1}a^{-3} \rangle$. Prove that the homomorphism $\phi : B \to B$ defined by (c) $\phi(a) = a^2, \ \phi(t) = t$ is surjective but is not an isomorphism.
 - A group G is said to be *residually finite* if for every $g \in G$ with $g \neq 1$, there exists a (d) homomorphism $\pi: G \to Q$, so that Q is a finite group and $\pi(g) \neq 1$.

Prove that B is not isomorphic to a subgroup of a residually finite group.

- 5. (a) Define the fundamental group $\pi_1(X, p)$ of a connected, locally simply connected space in terms of loops in X.
 - (b) Define the terms "simply connected" and "contractible".
 - (c) Let A be a group with presentation $\langle S_A | R_A \rangle$ and let B be a group with presentation $\langle S_B \mid R_B \rangle$. Let C be a group with generating set T. Define the push-out of the diagram of groups

$$A \stackrel{f_A}{\leftarrow} C \stackrel{f_B}{\to} B$$

and give (without proof) a presentation of it.

- (d) State the Seifert-van Kampen Theorem.
- (e) Prove that if $n \ge 2$ then $\pi_1(\mathbb{S}^n, x)$ is trivial.
- What is the fundamental group of $(\mathbb{S}^1 \times \mathbb{S}^3) # (\mathbb{S}^1 \times \mathbb{S}^3)$? [no proof required] (f)