Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) MSc EXAMINATIONS (MATHEMATICS) May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M4P36/MSP6

Representation Theory of Symmetric Groups

Date: Wednesday, 24th May 2006

Time: 2 pm – 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

Throughout this paper, n is a non-negative integer, \mathfrak{S}_n is the symmetric group of degree n, and F is a field.

1. Let λ be a partition of n. Explaining all the terms you use, define the permutation module M^{λ} for $F\mathfrak{S}_n$, and define a symmetric, \mathfrak{S}_n -invariant, non-singular bilinear form on M^{λ} . Define, also, the Specht module S^{λ} .

Now let p be a prime number and assume that F has characteristic p. State what it means to say that λ is p-singular. Prove that if λ is p-singular, then $S^{\lambda} \subseteq S^{\lambda \perp}$. What can be said about $S^{\lambda}/(S^{\lambda} \cap S^{\lambda \perp})$ when λ is p-regular?

Prove that the number of *p*-regular partitions of *n* equals the number of *p*-regular conjugacy classes of \mathfrak{S}_n .

2. For a given λ -tableau t, the Garnir relations state that certain elements of the group algebra $F\mathfrak{S}_n$ annihilate the generator e_t of the Specht module S^{λ} . State and prove the Garnir relations.

What other elements of the group algebra annihilate e_t ?

Explain what is meant by the standard basis of S^{λ} .

Now let $\lambda = (2, 2, 1)$ and

$$\begin{array}{ccc} 2 & 1 \\ t = & 3 & 5 \\ & 4 \end{array}$$

Express e_t as a linear combination of the elements of the standard basis of S^{λ} .

3. Define what is meant by saying that λ dominates μ for partitions λ and μ of n. State and prove the Basic Combinatorial Lemma which relates the dominance order to a property of tableaux.

Suppose that S^{λ} is a composition factor of the permutation module M^{μ} , defined over a field of characteristic zero. What relationship can you deduce between λ and μ ? Justify your answer. State Young's Rule which determines the composition factors of M^{μ} precisely.

4. State the Murnaghan-Nakayama Rule for determining the values of the irreducible characters χ^{λ} of \mathfrak{S}_n .

Let ϕ and ψ be the following characters of \mathfrak{S}_8 :

 $\phi = \chi^{(8)} + \chi^{(6,2)} + \chi^{(4,4)}, \qquad \psi = \chi^{(7,1)} + \chi^{(5,3)}.$

- (a) Prove that ϕ and ψ are equal on all permutations whose cycle decomposition contains a cycle of odd length.
- (b) Find the values of ϕ and ψ on the identity permutation.
- (c) Find the values of ϕ and ψ on an 8-cycle.

5. Let λ be a partition of n. State the Branching Theorem which determines the restriction $\chi^{\lambda} \downarrow \mathfrak{S}_{n-1}$ of the irreducible character χ^{λ} of \mathfrak{S}_n to \mathfrak{S}_{n-1} .

For which partitions λ is $\chi^{\lambda} \downarrow \mathfrak{S}_{n-1}$ an irreducible character of \mathfrak{S}_{n-1} ? Using this information, or otherwise, prove that for $n \ge 5$, every irreducible character of \mathfrak{S}_n (except $\chi^{(n)}$ and $\chi^{(1^n)}$) has degree at least n-1.

(The degree of a character is its value on the identity element. You may assume that the result holds for n = 5 and for n = 6.)