1. Let R be a ring and let M be a left R-module. Define the terms
(a) M is irreducible;
(b) a composition series for M.

Show that the following statements are equivalent,
(i) M is both Artinian and Noetherian.
(ii) Any proper chain of submodules of M can be refined to a composition series.
(iii) M has a composition series.
(You may use without proof standard facts about Noetherian modules and Artinian modules.)

Write down a composition series for the matrix ring $M_{r}(D)$ where D is a division ring. (A detailed proof is not required.)
2. Let R be a ring and let M be a left R-module. Define the terms
(a) M is semisimple;
(b) M is completely reducible.

State the Complementation Lemma, and use it to deduce that the following statements are equivalent.
(i) M is Artinian semisimple.
(ii) $M=L_{1} \oplus \cdots \oplus L_{k}$, where L_{i} is irreducible, $i=1, \ldots, k$, and k is an integer.

Let M be a left module over a division ring D. Show that M has a basis.
Give, with brief explanations, examples of
(1) a module that is semisimple but not Artinian;
(2) a module that is Artinian but not semisimple.
3. Let $R=R_{1} \times \cdots \times R_{k}$ be a direct product of a finite set of rings R_{1}, \ldots, R_{k}. Write down the corresponding orthogonal central idempotents of R, and explain why they have the required properties. (You are not required to show that R is a ring.)
Show that if I is an irreducible R_{i}-module for some i, then I is also an irreducible R-module. Prove also the converse.

Suppose that I is an irreducible R_{i}-module and that J is an irreducible R_{j}-module for some $j \neq i$. Show that $I \nexists J$ as an R-module.
Suppose a ring R is left Artinian and left semisimple. State the Wedderburn-Artin Theorem, and use it to give a list of irreducible left R-modules such that no two members of the list are isomorphic, but any irreducible left R-module is isomorphic to a member of the list.
4. Let R be a ring, M a left R-module. Define the radical $\operatorname{rad}(M)$ of M.

Let $\alpha: M \rightarrow N$ be a homomorphism of left R-modules. Show that $(\operatorname{rad}(M)) \alpha \subseteq \operatorname{rad}(N)$. Deduce that $\operatorname{rad}(R)$ is a twosided ideal of R.
Suppose that R is left Artinian. Show that $\operatorname{rad}(R)$ is the maximal twosided nilpotent ideal of R. (You may quote results from Nakayama's Lemma as required.)

Find the radicals of the following rings.
(1) $\mathbb{Z} / \mathbb{Z} a, a>1$;
(ii) $\quad T=\left(\begin{array}{cc}D & D \\ 0 & D\end{array}\right)$ where D is a division ring.
5. Let R be an integral domain. State the right Ore condition for $a, b \in R, b \neq 0$.

Define a relation \backsim on $R \times R^{*}$ by $(a, b) \backsim(c, d)$ if there exist nonzero $u, v \in R$ with $a u=c v, b u=d v$. Given that \backsim is an equivalence relation, define the "right fraction" $a b^{-1}$, and show how the Ore condition is used to define addition and multiplication on the set Q of all such fractions. (You are not required to verify that this addition and multiplication are well-defined or that Q is a ring.)
Suppose that an integral domain R contains two nonzero elements a, b with $a R \cap b R=0$. Show that R contains a direct sum $a R \oplus b a R \oplus \cdots \oplus b^{i} a R$ for any $i>1$.
Deduce that a right Noetherian integral domain satisfies the right Ore condition. Is the converse true?

