- 1. Let R be a ring and let M be a left R-module. Define the terms
 - (a) M is irreducible;
 - (b) a composition series for M.

Show that the following statements are equivalent,

- (i) M is both Artinian and Noetherian.
- (ii) Any proper chain of submodules of M can be refined to a composition series.
- (iii) M has a composition series.

(You may use without proof standard facts about Noetherian modules and Artinian modules.)

Write down a composition series for the matrix ring $M_r(D)$ where D is a division ring. (A detailed proof is not required.)

- 2. Let R be a ring and let M be a left R-module. Define the terms
 - (a) M is semisimple;
 - (b) M is completely reducible.

<u>State</u> the Complementation Lemma, and use it to deduce that the following statements are equivalent.

- (i) M is Artinian semisimple.
- (ii) $M=L_1\oplus\cdots\oplus L_k$, where L_i is irreducible, $i=1,\ldots,k$, and k is an integer.

Let M be a left module over a division ring D. Show that M has a basis.

Give, with brief explanations, examples of

- a module that is semisimple but not Artinian;
- (2) a module that is Artinian but not semisimple.
- 3. Let $R = R_1 \times \cdots \times R_k$ be a direct product of a finite set of rings R_1, \ldots, R_k . Write down the corresponding orthogonal central idempotents of R, and explain why they have the required properties. (You are *not* required to show that R is a ring.)

Show that if I is an irreducible R_i -module for some i, then I is also an irreducible R-module. Prove also the converse.

Suppose that I is an irreducible R_i -module and that J is an irreducible R_j -module for some $j \neq i$. Show that $I \ncong J$ as an R-module.

Suppose a ring R is left Artinian and left semisimple. <u>State</u> the Wedderburn-Artin Theorem, and use it to give a list of irreducible left R-modules such that no two members of the list are isomorphic, but any irreducible left R-module is isomorphic to a member of the list.

4. Let R be a ring, M a left R-module. Define the radical rad(M) of M.

Let $\alpha: M \to N$ be a homomorphism of left R-modules. Show that $(\operatorname{rad}(M))\alpha \subseteq \operatorname{rad}(N)$. Deduce that $\operatorname{rad}(R)$ is a twosided ideal of R.

Suppose that R is left Artinian. Show that rad(R) is the maximal twosided nilpotent ideal of R. (You may quote results from Nakayama's Lemma as required.)

Find the radicals of the following rings.

- (1) $\mathbb{Z}/\mathbb{Z}a$, a > 1;
- (ii) $T=\left(egin{array}{cc} D & D \\ 0 & D \end{array}
 ight)$ where D is a division ring.

5. Let R be an integral domain. State the right Ore condition for $a, b \in R$, $b \neq 0$.

Define a relation \backsim on $R \times R^*$ by $(a,b) \backsim (c,d)$ if there exist nonzero $u,v \in R$ with $au=cv, \ bu=dv$. Given that \backsim is an equivalence relation, define the "right fraction" ab^{-1} , and show how the Ore condition is used to define addition and multiplication on the set Q of all such fractions. (You are *not* required to verify that this addition and multiplication are well-defined or that Q is a ring.)

Suppose that an integral domain R contains two nonzero elements a,b with $aR \cap bR = 0$. Show that R contains a direct sum $aR \oplus baR \oplus \cdots \oplus b^iaR$ for any i > 1.

Deduce that a right Noetherian integral domain satisfies the right Ore condition.

Is the converse true?