1. Let Γ_{1} be a graph whose vertex-set is $\left\{a_{i}, b_{j} \mid 0 \leq i, j \leq 4\right\}$, where a_{i} and a_{k} are adjacent iff $i-k \equiv \pm 1 \bmod 5 ; b_{j}$ and b_{k} are adjacent iff $j-k \equiv \pm 2 \bmod 5 ; a_{i}$ and b_{j} are adjacent iff $i=j$. Let Γ_{2} be a graph whose vertex-set is $\left\{c_{i}, d_{j}, e \mid 0 \leq i \leq 5,0 \leq\right.$ $j \leq 2\}$, where c_{i} and c_{k} are adjacent iff $i-k \equiv \pm 1 \bmod 6 ; c_{i}$ and d_{j} are adjacent iff $i \equiv j \bmod 3 ; e$ is adjacent to d_{0}, d_{1}, d_{2} and there are no further adjacencies.

Prove that Γ_{1} and Γ_{2} are isomorphic graphs.
Let Γ be a graph isomorphic to Γ_{1} and Γ_{2} and let A be the automorphism group of Γ.

Prove the following assertions:
(i) A contains the Frobenius group F of order 20, where

$$
F=\left\langle\rho, \sigma \mid \rho^{5}=\sigma^{4}=1, \sigma^{-1} \rho \sigma=\rho^{2}\right\rangle ;
$$

(ii) for any two vertices v, u of Γ there is an element in F (and hence also in A) which sends v to u;
(iii) for a vertex v of Γ the subgroup of A formed by the automorphisms which send v to v is isomorphic to the dihedral group D_{12} of order 12;
(iv) $|A|=120$.

Let $G L_{n}(\mathbb{C})$ be the group of invertible $n \times n$ matrices with complex entries with respect to the matrix multiplication. With A as above let $\varphi: A \rightarrow G L_{n}(\mathbb{C})$ be a faithful representation (a group homomorphism with trivial kernel).

Prove that $n \geq 4$.
2. Let Ω be a set of n elements, where $n \geq 5$, let $S_{n}=\operatorname{Sym}(\Omega)$ be the symmetric group on Ω, let t be an element of S_{n} acting on Ω as a transposition (so that $t=(a, b)$ for some $a, b \in \Omega$), and let α be an automorphism of S_{n}.

Making use of the following Coxeter presentation of S_{n} (which you don't have to prove):

$$
\begin{gathered}
\left.S_{n}=\left\langle t_{1}, \ldots, t_{n-1}\right| t_{i}^{2}=1,\left(t_{i} t_{j}\right)^{m_{i j}}=1 \text { for } 1 \leq i<j \leq n-1\right\rangle \\
\text { where } m_{i i+1}=3 \text { and } m_{i j}=2 \text { if } j-i \geq 2,
\end{gathered}
$$

prove the following assertions:
(i) if $\alpha(t)$ acts on Ω as a transposition then α is an inner automorphism of S_{n} (so that there is $g \in S_{n}$ such that $\alpha(h)=g^{-1} h g$ for every $h \in S_{n}$;;
(ii) there exists an automorphism β of S_{6} which is not an inner automorphism;
(iii) the automorphism β in (ii) restricts to an automorphism on the alternating group A_{6} which is not an inner automorphism of A_{6}.
3. Let n be a positive integer, and let $\mathbb{R}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}$ be an n dimensional real vector space with the standard inner product $(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$. With a non-zero vector $r \in \mathbb{R}^{n}$ associate the reflection ρ_{r} which is a linear transformation of \mathbb{R}^{n} which sends r to its negative while fixing every vector in the hyperplane $H_{r}=\left\{x \mid x \in \mathbb{R}^{n},(r, x)=0\right\}$. Let $r, s \in \mathbb{R}^{n}$, let $(r, r)=(s, s)=1$, and let $\tau=\rho_{s} \rho_{r}$ be the product of the reflections associated with r and s.

Describe in terms of the inner product (r, s) the necessary and sufficient condition for the order of τ to be finite.

Let S_{n} be the symmetric group of $\{1, \ldots, n\}$. Define the action of S_{n} on \mathbb{R}^{n} by the following rule: $g(x)=\left(x_{g^{-1}(1)}, \ldots, x_{g^{-1}(n)}\right)$ where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, g \in S_{n}$ and $g^{-1}(i)$ is the image of i under the inverse of g, where $1 \leq i \leq n$.

Prove the following assertions:
(i) the above defined action is a faithful representation $\varphi: S_{n} \rightarrow G L_{n}(\mathbb{R})$ and $\varphi\left(S_{n}\right)$ preserves the standard inner product in the sense that $(x, y)=(g(x), g(y))$ for all $x, y \in \mathbb{R}^{n}$ and all $g \in S_{n}$;
(ii) if t is a transposition of S_{n} then there exists $r(t) \in \mathbb{R}^{n}$ such that $\varphi(t)=\rho_{r(t)}$;
(iii) the hyperplanes $H_{r(t)}$ taken for all the transpositions t in S_{n} share a 1-dimensional subspace.

Calculate the order of the automorphism group of the dihedral group D_{8} of order 8 .
4. For \mathbb{R}^{8} being an 8 -dimensional real vector space with the standard inner product, let Λ be the set of vectors $\lambda=\left(\lambda_{1}, \ldots, \lambda_{8}\right) \in \mathbb{R}^{8}$ satisfying the following:
(a) $2 \lambda_{i} \in \mathbb{Z}$ and $2 \lambda_{i} \equiv 2 \lambda_{j} \bmod 2$ for all $1 \leq i \leq j \leq 8$;
(b) $\sum_{i=1}^{8} \lambda_{i} \in 2 \mathbb{Z}$.

Prove the following assertions:
(i) $m \lambda+n \mu \in \Lambda$ for all $\lambda, \mu \in \Lambda$ and all $m, n \in \mathbb{Z}$;
(ii) $(\lambda, \lambda) \in 2 \mathbb{Z}$ for all $\lambda \in \Lambda$;
(iii) $(\lambda, \mu) \in \mathbb{Z}$ for all $\lambda, \mu \in \Lambda$;
(iv) if $x \in \mathbb{R}^{8}$ and $(x, \lambda) \in \mathbb{Z}$ for all $\lambda \in \mathbb{Z}$ then $x \in \Lambda$.
5. Follow the notation introduced in the first paragraph of Question 4.

Calculate the size of $\Lambda_{2}=\{\lambda \in \Lambda \mid(\lambda, \lambda)=2\}$.
Prove the following assertions:
(i) Λ_{2} contains a basis of \mathbb{R}^{8};
(ii) if $\lambda, \mu \in \Lambda_{2}$ and $(\lambda+\mu) / 2 \in \Lambda$ then $\lambda= \pm \mu$;

An automorphism g of Λ is a linear transformation of \mathbb{R}^{8} which preserves Λ as a set and also preserves the standard inner product (in the obvious sense that $(x, y)=$ $(g(x), g(y))$ for all $\left.x, y \in \mathbb{R}^{8}\right)$. For $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{8}\right)$ with $\varepsilon_{i} \in\{ \pm 1\}$, let g_{ε} denote the transformation of \mathbb{R}^{8} such that $g_{\varepsilon}(x)=\left(\varepsilon_{1} x_{1}, \ldots, \varepsilon_{8} x_{8}\right)$ for $x=\left(x_{1}, \ldots, x_{8}\right)$.

Prove the following assertions:
(iii) g_{ε} is an automorphism of Λ if and only if $\prod_{i=1}^{8} \varepsilon_{i}=1$;
(iv) if g is an automorphism of Λ such that $g(\lambda)=\lambda$ for every $\lambda \in \Lambda_{2}$ then g is the identity automorphism;
(v) if g is an automorphism of Λ such that $(g(\lambda)+\lambda) / 2 \in \Lambda$ for every $\lambda \in \Lambda$ then $g= \pm I$, where I is the identity operator.

