1. Let Γ_1 be a graph whose vertex-set is $\{a_i,b_j\mid 0\leq i,j\leq 4\}$, where a_i and a_k are adjacent iff $i-k\equiv \pm 1 \mod 5$; b_j and b_k are adjacent iff $j-k\equiv \pm 2 \mod 5$; a_i and b_j are adjacent iff i=j. Let Γ_2 be a graph whose vertex-set is $\{c_i,d_j,e\mid 0\leq i\leq 5,0\leq j\leq 2\}$, where c_i and c_k are adjacent iff $i-k\equiv \pm 1 \mod 6$; c_i and d_j are adjacent iff $i\equiv j\mod 3$; e is adjacent to d_0,d_1,d_2 and there are no further adjacencies.

Prove that Γ_1 and Γ_2 are isomorphic graphs.

Let Γ be a graph isomorphic to Γ_1 and Γ_2 and let A be the automorphism group of Γ .

Prove the following assertions:

(i) A contains the Frobenius group F of order 20, where

$$F = \langle \rho, \sigma \mid \rho^5 = \sigma^4 = 1, \sigma^{-1}\rho\sigma = \rho^2 \rangle;$$

- (ii) for any two vertices v, u of Γ there is an element in F (and hence also in A) which sends v to u;
- (iii) for a vertex v of Γ the subgroup of A formed by the automorphisms which send v to v is isomorphic to the dihedral group D_{12} of order 12;
- (iv) |A| = 120.

Let $GL_n(\mathbb{C})$ be the group of invertible $n \times n$ matrices with complex entries with respect to the matrix multiplication. With A as above let $\varphi : A \to GL_n(\mathbb{C})$ be a faithful representation (a group homomorphism with trivial kernel).

Prove that $n \geq 4$.

2. Let Ω be a set of n elements, where $n \geq 5$, let $S_n = \operatorname{Sym}(\Omega)$ be the symmetric group on Ω , let t be an element of S_n acting on Ω as a transposition (so that t = (a, b) for some $a, b \in \Omega$), and let α be an automorphism of S_n .

Making use of the following Coxeter presentation of S_n (which you don't have to prove):

$$S_n = \langle t_1, ..., t_{n-1} \mid t_i^2 = 1, (t_i t_j)^{m_{ij}} = 1 \text{ for } 1 \le i < j \le n-1 \rangle$$

where $m_{i,i+1} = 3$ and $m_{ij} = 2$ if $j - i \ge 2$,

prove the following assertions:

- (i) if $\alpha(t)$ acts on Ω as a transposition then α is an inner automorphism of S_n (so that there is $g \in S_n$ such that $\alpha(h) = g^{-1}hg$ for every $h \in S_n$);
- (ii) there exists an automorphism β of S_6 which is not an inner automorphism;
- (iii) the automorphism β in (ii) restricts to an automorphism on the alternating group A_6 which is not an inner automorphism of A_6 .

3. Let n be a positive integer, and let $\mathbb{R}^n = \{x = (x_1, ..., x_n) \mid x_i \in \mathbb{R}\}$ be an n-dimensional real vector space with the standard inner product $(x, y) = \sum_{i=1}^n x_i y_i$. With a non-zero vector $r \in \mathbb{R}^n$ associate the $reflection \rho_r$ which is a linear transformation of \mathbb{R}^n which sends r to its negative while fixing every vector in the hyperplane $H_r = \{x \mid x \in \mathbb{R}^n, (r, x) = 0\}$. Let $r, s \in \mathbb{R}^n$, let (r, r) = (s, s) = 1, and let $\tau = \rho_s \rho_r$ be the product of the reflections associated with r and s.

Describe in terms of the inner product (r, s) the necessary and sufficient condition for the order of τ to be finite.

Let S_n be the symmetric group of $\{1,...,n\}$. Define the action of S_n on \mathbb{R}^n by the following rule: $g(x) = (x_{g^{-1}(1)},...,x_{g^{-1}(n)})$ where $x = (x_1,...,x_n) \in \mathbb{R}^n$, $g \in S_n$ and $g^{-1}(i)$ is the image of i under the inverse of g, where $1 \leq i \leq n$.

Prove the following assertions:

- (i) the above defined action is a faithful representation $\varphi: S_n \to GL_n(\mathbb{R})$ and $\varphi(S_n)$ preserves the standard inner product in the sense that (x,y) = (g(x),g(y)) for all $x,y \in \mathbb{R}^n$ and all $g \in S_n$;
- (ii) if t is a transposition of S_n then there exists $r(t) \in \mathbb{R}^n$ such that $\varphi(t) = \rho_{r(t)}$;
- (iii) the hyperplanes $H_{r(t)}$ taken for all the transpositions t in S_n share a 1-dimensional subspace.

Calculate the order of the automorphism group of the dihedral group D_8 of order 8.

- **4.** For \mathbb{R}^8 being an 8-dimensional real vector space with the standard inner product, let Λ be the set of vectors $\lambda = (\lambda_1, ..., \lambda_8) \in \mathbb{R}^8$ satisfying the following:
 - (a) $2\lambda_i \in \mathbb{Z}$ and $2\lambda_i \equiv 2\lambda_j \mod 2$ for all $1 \le i \le j \le 8$;
 - (b) $\sum_{i=1}^{8} \lambda_i \in 2\mathbb{Z}$.

Prove the following assertions:

- (i) $m\lambda + n\mu \in \Lambda$ for all $\lambda, \mu \in \Lambda$ and all $m, n \in \mathbb{Z}$;
- (ii) $(\lambda, \lambda) \in 2 \mathbb{Z}$ for all $\lambda \in \Lambda$;
- (iii) $(\lambda, \mu) \in \mathbb{Z}$ for all $\lambda, \mu \in \Lambda$;
- (iv) if $x \in \mathbb{R}^8$ and $(x, \lambda) \in \mathbb{Z}$ for all $\lambda \in \mathbb{Z}$ then $x \in \Lambda$.

5. Follow the notation introduced in the first paragraph of Question 4.

Calculate the size of $\Lambda_2 = \{\lambda \in \Lambda \mid (\lambda, \lambda) = 2\}.$

Prove the following assertions:

- (i) Λ_2 contains a basis of \mathbb{R}^8 ;
- (ii) if $\lambda, \mu \in \Lambda_2$ and $(\lambda + \mu)/2 \in \Lambda$ then $\lambda = \pm \mu$;

An automorphism g of Λ is a linear transformation of \mathbb{R}^8 which preserves Λ as a set and also preserves the standard inner product (in the obvious sense that (x,y) = (g(x), g(y)) for all $x, y \in \mathbb{R}^8$). For $\varepsilon = (\varepsilon_1, ..., \varepsilon_8)$ with $\varepsilon_i \in \{\pm 1\}$, let g_{ε} denote the transformation of \mathbb{R}^8 such that $g_{\varepsilon}(x) = (\varepsilon_1 x_1, ..., \varepsilon_8 x_8)$ for $x = (x_1, ..., x_8)$.

Prove the following assertions:

- (iii) g_{ε} is an automorphism of Λ if and only if $\Pi_{i=1}^{8} \varepsilon_{i} = 1$;
- (iv) if g is an automorphism of Λ such that $g(\lambda) = \lambda$ for every $\lambda \in \Lambda_2$ then g is the identity automorphism;
- (v) if g is an automorphism of Λ such that $(g(\lambda) + \lambda)/2 \in \Lambda$ for every $\lambda \in \Lambda$ then $g = \pm I$, where I is the identity operator.