- 1. (i) Let k be a field and let $0 \neq f \in k[x,y]$ be a polynomial. Define what it means for a point $P \in k^2$ on f = 0 to be a singular point on f = 0. Give an example of a polynomial $0 \neq f \in \mathbb{R}[x,y]$ such that every $P \in \mathbb{R}^2$ on f = 0 is non-singular, but such that there exists a singular point $Q \in \mathbb{C}^2$ on f = 0.
 - (ii) Now let k be an arbitrary field, and set $f=y^2-x^4\in k[x,y]$. Prove that (0,0) is always a singular point on f=0. Give an example of a field k for which all k-points on f=0 are singular. Is there an example of a field k such that all k-points on the graph $y^2-x^5=0$ are singular?
- 2. Assuming any results from the course that you may need, find all rational solutions to $x^2 2y^2 = 1$.
- 3. Let p be a prime. We proved in the course that if $\alpha \in \mathbb{Z}_p$ then α has a unique expansion as $\alpha = \sum_{n \geq 0} a_n p^n$ with $a_n \in \{0, 1, 2, \ldots, p-1\}$, and in this question you may assume this result and also any other standard facts we proved about the a_n . Now set p=3, and consider the expansions of the following elements of \mathbb{Z}_3 as above.
 - (i) If $\alpha = 25 = \sum_{n \geq 0} a_n 3^n$ then what is a_2 ?
 - (ii) If $\alpha = 1/2 = \sum_{n>0} a_n 3^n$ then what is a_2 ?
 - (iii) If $\alpha = -10 = \sum_{n>0} a_n 3^n$ then what is a_{2007} ?
 - (iv) If $\alpha = 1/8 = \sum_{n>0} a_n 3^n$ then what is a_{2007} ?
- 4. Prove that there are infinitely many rational solutions to $x^3+y^3=9$. You may assume that if $[r:s:t]\in\mathbb{P}^2(\mathbb{Q})$ is a rational point on F=0, where F is the associated homogeneous cubic, then the tangent to F=0 at this point hits the cubic again at $[r(r^3+2s^3):-s(2r^3+s^3):t(r^3-s^3)]$.
- 5. You may assume any standard theorems from the course in this question.
 - (i) Assuming that the equation $y^2 = x^3 + 4$ has only finitely many rational solutions, find them all.
 - (ii) Prove that the equation $y^2 = x^3 + 3$ has infinitely many rational solutions.