1. (a) Let k be a field, and let $0 \neq f \in k[x, y]$ be a polynomial. What does it mean for a point $P=(a, b) \in k^{2}$ to be a singular point on $f=0$?
(b) Now let k be the field \mathbb{Q} of rational numbers, and consider the polynomial

$$
f(x, y)=x^{2}+4 x y+3 y^{2}-4 x-8 y+4 .
$$

(i) Find a singular point on $f=0$.
(ii) Hence or otherwise, find all solutions to $f(a, b)=0$ with $a, b \in \mathbb{Q}$.
2. (a) State and prove Hensel's Lemma.
(b) Let \mathbb{Z}_{3} denote the 3-adic integers. For each of the following polynomials $F(X) \in$ $\mathbb{Z}_{3}[X]$, either prove that there exists some $a \in \mathbb{Z}_{3}$ such that $F(a)=0$, or prove that no $a \in \mathbb{Z}_{3}$ satisfies $F(a)=0$.
(i) $\quad F(X)=X^{4}-X+3$.
(ii) $\quad F(X)=X^{4}-X+2$.
(iii) $\quad F(X)=X^{3}-12$.
3. (a) What does it mean for a subset V of \mathbb{R}^{n} to be convex? What does it mean for V to be symmetric? Prove that if V is non-empty, convex and symmetric, then V contains the origin.
(b) Let $\Lambda \subseteq \mathbb{Z}^{n}$ be a lattice of finite index m, and let V be a convex and symmetric subset of \mathbb{R}^{n}. State a theorem giving a criterion which guarantees that V contains a non-zero lattice point of Λ.
(c) Let N denote any positive divisor of $10^{10}+2$. Using the result in Part (b) above, prove that N can be written as $a^{2}+2 b^{2}$ with a and b integers.
4. Let E denote the elliptic curve $Y^{2}+Y=X^{3}$ over \mathbb{Q}. Assuming any standard results from the course, compute the torsion subgroup of $E(\mathbb{Q})$ and prove that it is generated by the point $(0,0)$.
5. Let E denote the elliptic curve $Y^{2}=X(X-1)(X+3)$ over \mathbb{Q}. Assuming any standard results from the course, prove that $E(\mathbb{Q})$ is finite.

