- 1. (a) Let k be a field, and let $0 \neq f \in k[x, y]$ be a polynomial. What does it mean for a point $P = (a, b) \in k^2$ to be a *singular point* on f = 0?
 - (b) Now let k be the field \mathbb{Q} of rational numbers, and consider the polynomial

$$f(x,y) = x^{2} + 4xy + 3y^{2} - 4x - 8y + 4.$$

- (i) Find a singular point on f = 0.
- (ii) Hence or otherwise, find all solutions to f(a, b) = 0 with $a, b \in \mathbb{Q}$.
- 2. (a) State and prove Hensel's Lemma.
 - (b) Let \mathbb{Z}_3 denote the 3-adic integers. For each of the following polynomials $F(X) \in \mathbb{Z}_3[X]$, either prove that there exists some $a \in \mathbb{Z}_3$ such that F(a) = 0, or prove that no $a \in \mathbb{Z}_3$ satisfies F(a) = 0.
 - (i) $F(X) = X^4 X + 3$.
 - (ii) $F(X) = X^4 X + 2$.
 - (iii) $F(X) = X^3 12$.
- 3. (a) What does it mean for a subset V of \mathbb{R}^n to be *convex*? What does it mean for V to be *symmetric*? Prove that if V is non-empty, convex and symmetric, then V contains the origin.
 - (b) Let $\Lambda \subseteq \mathbb{Z}^n$ be a lattice of finite index m, and let V be a convex and symmetric subset of \mathbb{R}^n . State a theorem giving a criterion which guarantees that V contains a non-zero lattice point of Λ .
 - (c) Let N denote any positive divisor of $10^{10} + 2$. Using the result in Part (b) above, prove that N can be written as $a^2 + 2b^2$ with a and b integers.
- 4. Let E denote the elliptic curve $Y^2 + Y = X^3$ over \mathbb{Q} . Assuming any standard results from the course, compute the torsion subgroup of $E(\mathbb{Q})$ and prove that it is generated by the point (0,0).
- 5. Let *E* denote the elliptic curve $Y^2 = X(X 1)(X + 3)$ over \mathbb{Q} . Assuming any standard results from the course, prove that $E(\mathbb{Q})$ is finite.