1. A particle of mass m moving in a time-dependent potential, in one dimension, has a Hamiltonian of the form

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U(x,t) \ .$$

The potential is abruptly changed at time t = 0, so that

$$U(x,t) = \left\{ \begin{array}{ll} U_i(x), & \text{for} \quad t < 0 \\ U_f(x), & \text{for} \quad t > 0 \end{array} \right.$$

For t < 0 the particle is in the eigen-state $\psi_n^{(i)}(x)$ of the initial Hamiltonian. Write down an expression for the probability that the particle is in the eigen-state $\psi_m^{(f)}(x)$ of the final Hamiltonian for t > 0. In particular, obtain the probability w that the particle remains in the ground state.

Determine the normalised ground state wave–function for a particle in the 'box' potential

$$U(x) = \begin{cases} 0, & \text{for } |x| < a/2 \\ +\infty, & \text{for } |x| > a/2 \end{cases}$$

At t=0, the width of the box is suddenly increased from a_i to $a_f>a_i$. Obtain the probability w as a function of the ratio $\nu=a_f/a_i$. Work out the limit

$$\lim_{\nu \to 1} w(\nu)$$

and explain the result.

2. For a quantum particle of mass m in a one-dimensional potential well, the WKB quantisation rule is

$$\int_{a_1}^{a_2} p(x) dx = \pi \hbar (n + 1/2),$$

where p(x) is the classical momentum and a_1 and a_2 are the classical turning points (n = 0, 1, 2...).

Within this framework, determine the WKB energy levels, E_n , for a particle in the potential of the form

$$U(x) = Ax^6 ,$$

where A is a constant. [Express the result in terms of the constant $I = \int_0^1 dt \sqrt{1-t^6}$ but do not calculate this integral.]

(i) For large $n \gg 1$, the energy distance $\Delta E_n = E_{n+1} - E_n$ between the neighbouring levels scales as $\Delta E_n \sim n^{\beta}$. Determine β . Show how the same result can be obtained by using the classical frequency $\omega = 2\pi/T$, where the classical period is given by

$$T = 2m \int_{a_1}^{a_2} \frac{dx}{p(x)} .$$

(ii) Next assume that there are N non-interacting electrons (i.e. spin-1/2 particles obeying the Pauli principle) placed into the above potential well. For $N \gg 1$, estimate the Fermi energy and the total ground-state energy of the system.

3. (i) Three spin-1/2's interact via the exchange interaction of the strength J:

$$\hat{H} = J\left(\hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2 + \hat{\mathbf{s}}_2 \cdot \hat{\mathbf{s}}_3 + \hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_3\right)$$

where $\hat{\mathbf{s}}_i$'s (i = 1, 2, 3) are spin-1/2 operators.

Determine all the eigenvalues of the Hamiltonian \hat{H} .

[Hint: relate the exchange Hamiltonian to the total spin operator; total spin for a complex of three spin-1/2's can take values 1/2 or 3/2.]

- (ii) Four identical Bose particles occupy two different quantum states $\psi_i(\xi)$, i=1,2. The wave–functions $\psi_i(\xi)$ are normalised and mutually orthogonal. Determine the normalised four–particle wave–functions $\Psi(\xi_1,\xi_2,\xi_3,\xi_4)$ such that the four particles are grouped in two pairs, each pair occupying the same quantum state.
- **4.** The Hamiltonian of a three-dimensional harmonic oscillator of mass m and frequency ω is given by:

$$\hat{H}_0 = \sum_{i=1}^{3} \left[\frac{\hat{p}_i^2}{2m} + \frac{1}{2} m \omega^2 \hat{x}_i^2 \right] ,$$

where \hat{x}_i and \hat{p}_i are the canonical coordinate and momentum operators with the commutation relation $[\hat{x}_i, \hat{p}_j] = i\delta_{ij}$ (in units such that $\hbar = 1$).

The annihilation and creation operators are defined by:

$$\hat{a}_i = \frac{1}{\sqrt{2m\omega}}(m\omega\hat{x}_i + i\hat{p}_i), \quad \hat{a}_i^{\dagger} = \frac{1}{\sqrt{2m\omega}}(m\omega\hat{x}_i - i\hat{p}_i).$$

Show that the creation and annihilation operators satisfy the commutation relations

$$[\hat{a}_i, \hat{a}_i^{\dagger}] = \delta_{ij}$$

and derive the second–quantized version of the Hamiltonian of the threedimensional harmonic oscillator.

An external non-linear perturbation

$$\hat{V} = \alpha \hat{x}_1^2 \hat{x_2}^2 \hat{x_3}^4$$

is now applied to the oscillator.

Express \hat{V} in terms of the annihilation and creation operators.

Using the commutation relations, find the first-order correction to the ground-state energy due to the perturbation \hat{V} .

5. A particle of mass m moves in the periodic 'brush' potential of the form

$$U(x) = \lambda \sum_{i=-\infty}^{+\infty} \delta(x - ia) ,$$

where i is an integer, a is the period of the potential, and $\lambda > 0$. The energy bands $\epsilon_n(k)$ (n = 0, 1, 2, ...) are determined from the dispersion relation

$$\cos(ka) = \cos(pa) + \frac{\alpha}{p}\sin(pa) ,$$

where $E = \hbar^2 p^2/(2m)$ and $\alpha = m\lambda/\hbar^2$.

Determine the asymptotic form of the energy gaps at the edge of the Brillouin zone, $k = \pi/a$,

$$\Delta \epsilon_n = \epsilon_{n+1}(\pi/a) - \epsilon_n(\pi/a)$$

(n even) in the limit of high energies.

[Hint: the gaps required above are between the closest pairs of energy eigenvalues.]