A particle of mass m moving in a time-dependent potential, in one dimension,
has a Hamiltonian of the form
h? 92

H=—%@+U(I,ﬂ.

The potential is abruptly changed at time ¢ = 0, so that

) U(z), for t<0
Vied)= { Us(z), for t>0.

For ¢ < 0 the particle is in the eigen-state 1{)(z) of the initial Hamiltonian.
Write down an expression for the probability that the particle is in the eigen-
state ¢{f)(z) of the final Hamiltonian for t > 0. In particular, obtain the
probability w that the particle remains in the ground state.

Determine the normalised ground state wave—function for a particle in the
‘box’ potential

_ ] 0, for |z| <a/2
Ue)= { +o0, for |z|>a/2.

At t = 0, the width of the box is suddenly increased from a; to af > a;.
Obtain the probability w as a function of the ratio v = a;/a;. Work out the
limit

()

and explain the result.

For a quantum particle of mass m in a one-dimensional potential well, the
WKB quantisation rule is

/G p(z)dz = nh(n + 1/2),

where p(z) is the classical momentum and a; and a, are the classical turning
points (n =0,1,2...).

Within this framework, determine the WKB energy levels, E,,, for a particle
in the potential of the form

U(z) = Az,

where A is a constant. [Express the result in terms of the constant I =
Jo dt+/T =18 but do not calculate this integral.|

(i) For large n > 1, the energy distance AE, = n+1 — B, between the
neighbouring levels scales as AE,, ~ n®. Determine 8. Show how the same
result can be obtained by using the classical frequency w = 27 /T, where the
classical period is given by

T =2m “ —Ei—m-— .
ay p(:r)

(ii) Next assume that there are N non-interacting electrons (i.e. spin-1/2
particles obeying the Pauli principle) placed into the above potential well.
For N >> 1, estimate the Fermi energy and the total ground-state energy of
the system.



3.

(i) Three spin-1/2’s interact via the exchange interaction of the strength J:
H=J 8 +8 -85 +5 - 8)

where §;’s (i = 1,2, 3) are spin-1/2 operators.

Determine all the eigenvalues of the Hamiltonian H.

[Hint: relate the exchange Hamiltonian to the total spin operator; total spin
for a complex of three spin-1/2’s can take values 1/2 or 3/2.]

(ii) Four identical Bose particles occupy two different quantum states ;i (€),
t=1,2. The wave-functions ¢;(£) are normalised and mutually orthogonal.
Determine the normalised four-particle wave—functions U(&,&2,&3,&4) such

that the four particles are grouped in two pairs, each pair occupying the same
quantum state.

The Hamiltonian of a three—dimensional harmonic oscillator of mass m and
frequency w is given by:
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Hy = — 4+ —mwi;| ,
° ;Lm N

where %; and p; are the canonical coordinate and momentum operators with

the commutation relation [#;, p;] = 16;; (in units such that i = 1).

The annihilation and creation operators are defined by:

1
v 2mw

N 1
a; =
\2mw

Show that the creation and annihilation operators satisfy the commutation
relations

(mwd; — ip;) .

(mwi; +ip;), 6l =

@, ]] = &;
and derive the second—quantized version of the Hamiltonian of the three-
dimensional harmonic oscillator.

An external non-linear perturbation
V = adleyt
is now applied to the oscillator.

Express V in terms of the annihilation and creation operators.

Using the commutation relations, find the first-order correction to the ground-
state energy due to the perturbation V.



A particle of mass m moves in the periodic ‘brush’ potential of the form

U(z) = A +Z°° é(z —ia) ,

i=—00

where i is an integer, a is the period of the potential, and A > 0. The energy
bands €,(k) (n =0,1,2,...) are determined from the dispersion relation

cos(ka) = cos(pa) + = sin(pa) ,

where E = A%p?/(2m) and a = mA/hZ.

Determine the asymptotic form of the energy gaps at the edge of the Brillouin
zone, k = 7/a,

Aep = €py1(m/a) — €x(m/a)
(n even) in the limit of high energies.

[Hint: the gaps required above are between the closest pairs of energy eigen-
values.]



