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1. A particle of mass m moving in a time-dependent potential, in three dimen-
sions, has a Hamiltonian of the form

Ĥ = −
h̄2

2m

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]

+ U(~r, t) ,

with ~r = (x, y, z). The potential is abruptly changed at time t = 0, so that

U(~r, t) =

{
Ui(~r), for t < 0 ,
Uf (~r), for t > 0 .

For t < 0 the particle is in the eigen-state ψ(i)n (~r) of the initial Hamiltonian.
Write down an expression for the probability that the particle is in the eigen-
state ψ(f)m (~r) of the final Hamiltonian for t > 0. In particular, obtain the
probability w that the particle remains in the ground state.

The particle in a harmonic potential, Ui(~r) =
1
2
mω2|~r|2, is suddenly subjected

to an additional force F in the z–direction Uf (~r) = Ui(~r) + Fz. Determine
the probability w(F ), as a function of the force F , that the particle remains
in the ground state. Sketch w(F ).

[You may use the result that the normalised ground–state wave–function for
a one–dimensional harmonic oscillator is

ψ0(x) =
(
mω

πh̄

)1/4
e−mωx

2/2h̄

without proof.]
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2. For a quantum particle of mass m in a one–dimensional potential well, the
WKB quantisation rule is

2
∫ a2

a1

p(x)dx = 2πh̄(n+ 1/2),

where p(x) is the classical momentum and a1 and a2 are the classical turning
points (n = 0, 1, 2...).

(i) Within this framework, determine the WKB energy levels, En, for a
particle in the potential of the form

U(x) = Kx4 ,

where K is a constant. [Express the result in terms of the constant

I0 =
∫ 1

0
du
√
1− u4

but do not calculate this integral.]

(ii) For large n � 1, the energy difference, ΔEn = En+1 − En, between the
neighbouring level scales as ΔEn ∼ nα. Determine α. Show how the same
result can be obtained by using the classical frequency ω = 2π/T , where the
classical period is given by

T = 2m
∫ a2

a1

dx

p(x)
.

(iii) Next assume that there are N non-interacting electrons (i.e. spin–1/2
particles obeying the Pauli principle) placed into the above potential well.
For N � 1, estimate the Fermi energy and the total ground–state energy of
the system.
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3. Two spin–1/2 electrons interact via the exchange interaction J and are su-
jected to the time–dependent magnetic field H(t)

Ĥ = J~̂s1 ∙ ~̂s2 − μH(t)S
z,

where Sz is the z–component of the total spin operator ~̂S = ~̂s1 + ~̂s2.

In terms of the wave-functions {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}, construct the basis

of the singlet and triplet states diagonalising ~̂S2 and Sz. In this basis solve
the time–dependent Schroedinger equation (set h̄ = 1 in this question):

i
∂

∂t
ψ(t) = Ĥ(t)ψ(t) .

Next assume that the system was initially (at t = −∞) polarised along the
x–axis, so that Sxψ+ = ψ+. Also assume that the integral

∞∫

−∞

dt H(t) ≡ H0

converges.

Then calculate the probability w+ that the system will remain in the same
state at t = +∞. Calculate the probabilities w− and w0 that, at t = +∞,
the system is in the state ψ− such that S

xψ− = −ψ− or in the state ψ0 such
that Sxψ0 = 0, respectively.

Show that the sum of the three probabilities is equal to 1 and explain why.
Does any of the probabilities depend on the strength J of the exchange
interaction?
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4. The Hamiltonian of a two–dimensional harmonic oscillator of mass m and
frequency ω is given by:

Ĥ0 =
2∑

α=1

[
p̂2α
2m
+
1

2
mω2x̂2α

]

,

where x̂α and p̂α are canonical coordinate and momentum operators with the
commutation relation [x̂α, p̂β] = iδαβ (in units such that h̄ = 1).

The annihilation and creation operators are defined by:

âα =
1

√
2mω

(mωx̂α + ip̂α), â†α =
1

√
2mω

(mωx̂α − ip̂α) .

Show that the creation and annihilation operators satisfy the commutation
relations

[âα, â
†
β] = δαβ

and derive the second–quantised Hamiltonian for the two–dimensional har-
monic oscillator.

An external non-linear perturbation

V̂ = αx̂1x̂2 + βx̂
2
1x̂2

2

is now applied to the oscillator.

Express V̂ in terms of the annihilation and creation operators.

Using the commutation relations (or otherwise), find the first-order correction
to the ground-state energy due to the perturbation V̂ .

c© University of London 2006 M4A8: Page 5 of 6



5. Electrons hop between neighbouring sites of a one–dimensional lattice (chain).
The hopping integrals alternate along the chain being t1 on even links and
t2 on odd links.

Sketch the lattice and indicate the hopping processes on the sketch. Suit-
ably numbering the sites and chosing the unit cell, write down the second–
quantised Hamiltonian of the problem.

Diagonalise the Hamiltonian in momentum space. Hence derive the expres-
sions for the energy bands. How many energy bands are there? Sketch the
energy bands and determine the magnitude of the energy gap at the Brillouin
zone boundary.

If there is one (spin–1/2) electron per site, is the system an insulator or a
conductor? Will your conclusion change if t1 = t2?
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